DOI QR코드

DOI QR Code

Enviroment-Friendly Synthesis of Nanocrystalline Nickel Oxide and Its Antibacterial Properties

폐과일껍질을 이용한 친환경 NiO 나노분말 합성 및 향균특성 연구

  • Yuvakkumar, R. (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Song, Jae Sook (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Hong, Sun Ig (Department of Nanomaterials Engineering, Chungnam National University)
  • ;
  • 송재숙 (충남대학교 신소재공학과) ;
  • 홍순익 (충남대학교 신소재공학과)
  • Received : 2017.07.17
  • Accepted : 2017.11.15
  • Published : 2018.01.27

Abstract

This study reports an environment-friendly synthetic strategy to process nickel oxide nanocrystals. A mesoporous nickel oxide nanostructure was synthesized using an environmentally benign biomimetic method. We used a natural rambutan peel waste resource as a raw material to ligate nickel ions to form nickel-ellagate complexes. The direct decomposition of the obtained complexes at $700^{\circ}C$, $900^{\circ}C$ and $1100^{\circ}C$ in a static air atmosphere resulted in mesoporous nickel oxide nanostructures. The formation of columnar mesoporous NiO with a concentric stacked doughnuts architecture was purely dependent on the suitable direct decomposition temperature at $1100^{\circ}C$ when the synthesis was carried out. The prepared NiO nanocrystals were coated on cotton fabric and their antibacterial activity was also analyzed. The NiO nanoparticle-treated cotton fabric exhibited good antibacterial and wash durability performance.

Keywords

References

  1. R. Yuvakkumar, J. S. Song, P. W. Shin and S. I. Hong, Korean J. Mater. Res., 26, No. 6 311 (2016). https://doi.org/10.3740/MRSK.2016.26.6.311
  2. J. Shi and E. Wu, Microporous Mesoporous Mater., 168, 188 (2013). https://doi.org/10.1016/j.micromeso.2012.10.007
  3. Q. Liu, W. M. Zhang, Z. M. Cui, B. Zhang, L. J. Wan and W. G. Song, Microporous Mesoporous Mater., 100, 233 (2007). https://doi.org/10.1016/j.micromeso.2006.10.041
  4. J. Roggenbuck, T. Waitz and M. Tiemann, Microporous Mesoporous Mater., 113, 575 (2008). https://doi.org/10.1016/j.micromeso.2007.12.018
  5. J. H. Li, C. C. Wang, C. J. Huang, Y. F. Sun, W. Z. Weng and H. L. Wan, Appl. Catal., A 382, 99 (2010).
  6. D. Wang, R. Xu, X. Wang and Y. Li, Nanotechnology, 17, 979 (2006). https://doi.org/10.1088/0957-4484/17/4/023
  7. Y. Wang, C. Ma, X. Sun and H. Li, Microporous Mesoporous Mater., 71, 99 (2004). https://doi.org/10.1016/j.micromeso.2004.03.022
  8. H. Li, S. Zhu, H. Xi and R. Wang, Microporous Mesoporous Mater., 89, 196 (2006). https://doi.org/10.1016/j.micromeso.2005.10.033
  9. D. J. Lensveld, J. G. Mesu, A. J. Dillen and K. P. de Jong, Microporous Mesoporous Mater., 44-45, 401 (2001). https://doi.org/10.1016/S1387-1811(01)00214-1
  10. S. R. Llamazares, J. Merchan, I. Olmedo, H. P. Marambio, J. P. Munoz, P. Jara, J. C. Sturm, B. Chornik, O. Pena, N. Yutronic and M. J. Kogan, J. Nanosci. Nanotechnol., 8, 3820 (2008). https://doi.org/10.1166/jnn.2008.199
  11. M. A. Ali, S. Srivastava, P. R. Solanki, Venu Reddy, V. V. Agrawal, C. G. Kim, R. John and B. D. Malhotra, Sci. Rep., 3, 2661 (2013). https://doi.org/10.1038/srep02661
  12. J. Singh, P. Kalita, M. K. Singh and B. D. Malhotra, Appl. Phys. Lett., 98, 123702 (2011). https://doi.org/10.1063/1.3553765
  13. M. A. Wahab and F. Darain, Nanotechnology, 25, 165701(2014). https://doi.org/10.1088/0957-4484/25/16/165701
  14. S. K. Yadav, J. Singh, V. V. Agrawal and B. D. Malhotra, Appl. Phys. Lett., 101, 023703 (2012). https://doi.org/10.1063/1.4736578
  15. Z. X. Yang, W. Zhong, C. Au, J. Y. Wang and Y. W. Du, CrystEngComm, 13, 1831 (2011). https://doi.org/10.1039/C0CE00462F
  16. W. Fu, A. Yamaguchi, H. Kaned and N. Teramae, Chem. Commun., 853 (2008).
  17. C. Jayaseelan, A. Abdul Rahuman, A. Vishnu Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik and K. V. Bhaskara Rao, Spectrochim. Acta A, 90, 78 (2012). https://doi.org/10.1016/j.saa.2012.01.006
  18. S. N. Barnaby, S. M. Yu, K. R. Fath, A. Tsiola, O. Khalpari and I. A. Banerjee, Nanotechnology, 22, 225605(2011). https://doi.org/10.1088/0957-4484/22/22/225605
  19. L. B. McCusker, F. Liebau and G. Engelhardt, Microporous Mesoporous Mater., 58, 3 (2003). https://doi.org/10.1016/S1387-1811(02)00545-0
  20. E. Koren, R. Kohen and I. A. Ginsburg, J. Agric. Food Chem., 57, 7644 (2009).
  21. S. N. Barnaby, S. M. Yu, K. R. Fath, A. Tsiola, O. Khalpari and I. A. Banerjee, Nanotechnology, 22, 225605 (2011). https://doi.org/10.1088/0957-4484/22/22/225605
  22. J. A. Jacob, H. S. Mahal, N. Biswas, T. Mukherjee and S. Kapoor, Langmuir, 24, 528 (2008).
  23. S. R. Przewloka and B. J. Shearer, Holzforschung, 56, 13 (2002).
  24. M. McDonald, I. Mila and A. Scalbert, J. Agric. Food Chem., 44, 599 (1996). https://doi.org/10.1021/jf950459q