DOI QR코드

DOI QR Code

무선전력 통신 네트워크에서 공평성 향상을 위한 우선순위 기반 랜덤 접속 제어

Prioritized Random Access Control for Fairness Improvement in Wireless-Powered Communication Networks

  • Choi, Hyun-Ho (Department of Electrical, Electronic and Control Engineering, Institute for Information Technology Convergence, Hankyong National University)
  • 투고 : 2017.09.12
  • 심사 : 2017.09.27
  • 발행 : 2018.01.31

초록

단말의 수가 증가하고 사물 인터넷 환경이 분산화 됨에 따라 랜덤 접속 기반의 무선전력 통신 네트워크에 관한 연구가 필요하다. 랜덤 접속 기반 무선전력 통신 네트워크에서 단말은 주어진 프레임 내에서 늦게 접속할수록 전송 전에 더 많은 에너지를 하베스팅하여 더 높은 파워로 송신할 수 있기 때문에 접속 성공시 더 높은 처리율을 얻을 수 있다. 이러한 특성에 기반하여 제안하는 랜덤 접속 제어 프로토콜은 채널 값에 따라 단말에게 우선순위를 부여하고 우선순위에 따라 랜덤 슬롯을 구분함으로써 접속점과의 근거리 단말이 원거리 단말보다 먼저 접속하게 만든다. 이를 통하여 근거리 단말의 처리율을 낮추고 원거리 단말의 처리율을 높이는 방식으로 이중 원근 문제를 완화시키고 사용자 공평성을 향상시킨다. 수학적 분석 및 모의실험 결과 제안 접속 제어 방식은 우선순위 레벨에 따라 채널 처리율 및 사용자 공평성 성능을 향상시킨다.

As Internet of things with a large number of nodes emerges, wireless-power communication networks (WPCN) based on a random access protocol needs to be investigated. In the random access-based WPCN, a terminal accessing later in given random access (RA) slots can harvest more energy before transmission and thus can transmit data with higher power and achieve higher throughput if the access is successful. On the basis of this property, the proposed random access control protocol gives the terminals priority and distinguishes the RA slots according to the priority level, so that a near terminal with access point allows to access preferentially other than a remote terminal. This operation decreases the throughput of near terminal and increases the throughput of remote terminal, and then, the doubly near-far problem in WPCN is resolved and the user fairness is improved. Results show that the proposed random access control improves both channel throughput and user fairness according to the priority level.

키워드

참고문헌

  1. S. Bi, Y. Zeng, and R. Zhang, "Wireless powered communication networks: An overview," IEEE Wireless Communications, vol. 23, no. 2, pp. 10-18, Apr. 2016. https://doi.org/10.1109/MWC.2016.7462480
  2. H. Ju and R. Zhang, "Throughput maximization for wireless powered communication networks," IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 418-428, Jan. 2014. https://doi.org/10.1109/TWC.2013.112513.130760
  3. H. Ju and R. Zhang, "Optimal resource allocation in full-duplex wireless powered communication network," IEEE Transactions on Communications, vol. 62, no. 10, pp. 3528-3540, Sep. 2014. https://doi.org/10.1109/TCOMM.2014.2359878
  4. H. Ju and R. Zhang, "User cooperation in wireless powered communication networks," in Proceedings of the IEEE GLOBECOM, Austin: TX, pp. 1430-1435, 2014.
  5. S. H. Kim and D. I. Kim. "Performance tradeoff in two-zone based wireless powered communication networks," in Proceedings of the IEEE International Symposium on Wireless Communication Systems (ISWCS), Brussels: Belgium, pp. 286-290, 2015.
  6. D. Mishra, S. De, and D. Krishnaswamy. "Dilemma at RF Energy Harvesting Relay: Downlink Energy Relaying or Uplink Information Transfer?," IIEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 4939-4955, Aug. 2017.
  7. S. H. Choi and D. I. Kim. "Backscatter radio communication for wireless powered communication networks," in Proceedings of the 21st Asia-Pacific Conference on Communications (APCC), Kyoto: Japan, pp. 370-374, 2015.
  8. P. Tamilarasi and B. Lavenya. "Energy and throughput enhancement in wireless powered communication networks using RF-MAC and CSMA," in Proceedings of the IEEE International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore: India, pp. 1-4, 2015.
  9. S. Wu, et al. "Analysis and performance evaluation of dynamic frame slotted-ALOHA in wireless machine-to-machine networks with energy harvesting," in Proceedings of the IEEE GLOBECOM, Austin: TX, pp. 1081-1086, 2014.
  10. M. Moradian and F. Ashtiani, "Throughput analysis of a slotted aloha-based network with energy harvesting nodes," in Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sydney: Australia, pp. 351-356, Sep. 2012.
  11. R. Jain, D.-M. Chiu, and W. Hawe. "A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems," Digital Equipment Corporation, Technical Report DEC-TR-301, 1984.
  12. K. Lee, H.-H. Choi, "Power Splitting-based Analog Network Coding for Improving Physical Layer Security in Energy Harvesting Networks," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 10, pp. 1849-1854, Oct. 2017. https://doi.org/10.6109/JKIICE.2017.21.10.1849
  13. M. Bansal, L. Shricastava, "Performance Analysis of Wireless Mobile Adhoc Network with Different Types of Antennas," HSST, ISSN: 2508-9080, vol.3, no.1, pp. 33-44, Mar. 2017, http://dx.doi.org/10.21742/APJCRI.2017.03.03.
  14. H.-H. Choi, "Adaptive and Prioritized Random Access and Resource Allocation Schemes for Dynamic TDMA/TDD Protocols," Journal of information and communication convergence engineering, vol. 15, no. 1, pp. 28-36, Mar. 2017. https://doi.org/10.6109/JICCE.2017.15.1.28