DOI QR코드

DOI QR Code

무기체계 신뢰도 예측 프로세스 현황과 후속군수지원 데이터 적용 방안

A Study on the Examination of Reliability Prediction Process and the Application of PLS data in Weapon System

  • Kim, Geun-Hyung (ILS(Integrated Logistics Support) R&D Lab, LIG Nex1) ;
  • Lee, Kang-Taek (ILS(Integrated Logistics Support) R&D Lab, LIG Nex1) ;
  • Yoon, Jeong-Ah (ILS(Integrated Logistics Support) R&D Lab, LIG Nex1) ;
  • Seo, Yang-Woo (ILS(Integrated Logistics Support) R&D Lab, LIG Nex1) ;
  • Park, Seung Hwan (Department of Industrial Management Engineering, Korea University)
  • 투고 : 2017.09.20
  • 심사 : 2018.01.05
  • 발행 : 2018.01.31

초록

우리 군의 무기체계는 강력한 화력과 다양한 기능을 보유하고 있으며, 이에 따라 무기체계 신뢰도 예측을 통한 품질 향상의 중요성 역시 점점 커지고 있다. 현재 우리 군의 무기체계 신뢰도 예측은 무기체계를 구성하는 부품들의 신뢰도들의 단순 합계를 통해 이루어지기 때문에 정확한 신뢰도 산출이 어렵다. 따라서 군은 신뢰도 향상을 위해 다양한 연구를 수행할 필요가 있다. 최근 다양한 산업에서 축적된 데이터를 활용한 많은 연구가 시도됨에 따라, 방위산업에서도 축적되고 있지만 활용되지 않은 다크(Dark) 데이터에 관한 분석을 시도하고 있다. 특히, 방위산업의 후속군수지원 단계는 무기체계의 신뢰도 향상을 위한 후속군수지원(PLS) 데이터를 활용할 필요가 있다. 본 연구는 부품단위의 기존 신뢰도 예측 방법에 대한 현황과 문제점을 검토하고, 후속군수지원의 결함 데이터의 적용방안을 제시한다. 이로 인해 무기체계 개발 시 신뢰도 예측의 정확성과 품질 향상에 도움이 될 것으로 기대한다.

As the weapon systems of the Korean Army possess massive firepower and multiple functions, the improvement of their quality through reliability prediction is becoming increasingly important. Currently, the reliability prediction of the weapon systems of the Korean Army is a difficult process, because it is conducted by naively calculating the reliability of their constituent parts. Recently, as various studies using accumulated data are undertaken across various industries, the defense industry is also attempting to analyze the Dark Data which have been accumulated but not yet used. Therefore, it is necessary to apply Post-Logistics Support (PLS) data in order to improve the reliability of the weapon systems and, for this purpose, the Korean Army needs to conduct diverse studies. Especially, the PLS data in the defense industry is very useful for reliability prediction, because the data on the defects reported after the development of the weapon systems are accumulated in this phase. This study examines the existing reliability prediction method conducted using the component parts and proposes a new reliability prediction method using PLS data. This framework can ultimately contribute to improve the prediction accuracy and quality of the weapon systems.

키워드

참고문헌

  1. DAPA, DTaQ, ADD, Introduction of defense technology research and development, p. 4, Aug, 2014.
  2. K. Y. Jang, Research on ROKAF Logistics Development Plan through Total Life Cycle Systems Management (TLCSM), Kyung Hee University, pp. 4-12, 2013.
  3. Republic of Korea Army, Practice guidelines for reliability analysis of weapon system, no. 2, pp . 12-15, Oct, 2012.
  4. K. Y. Kim, S. J. Bae, Establishing Method of RAM Objective Considering Combat Readiness and Field Data of Similarity Equipment, Journal of the Society of Korea Industrial and Systems Engineering, vol. 32, no. 3 pp. 127-134, Sep, 2009.
  5. Department of Defense, DoD Guide For Achieving Reliability, Availability, And Maintainability "System Engineering for Mission Success", Chapter 1, 2005.
  6. Ministry of National Defense, Letter of introduction f or developing war potential, vol. 1825, pp. 217-219, 2015.
  7. Defense Acquisition Program Administration, Guideline for RAM analysis of weapon system, 2015 .
  8. D. Kececioglu, Reliability Engineering Handbook, Vol 2, 1991.
  9. Defense Acquisition Program Administration, Handbook for RAM analysis of weapon system, pp. 113-116, 2014.
  10. K. N. Lee, H. C. Lee, A Study on the Combined Decision Tree(C4.5) and Neural Network Algorithm for Classification of Mobile Telecommunication Customer, Journal of intelligent information systems, vol. 9, no. 1, pp. 139-155, 2003.
  11. C. J. Lee, C. S. Park, J. S. Kim, J. G. Baek, A Study on Improving Classification Performance for Manufacturing Process Data with Multicollinearity and Imbalanced Distribution, Journal of the Korean Institute of Industrial Engineers, vol. 41, no. 1, pp. 25-33, 2015. https://doi.org/10.7232/JKIIE.2015.41.1.025
  12. H. J. Ryu, H. H. Ko, J. H. Kim, S. S. Kim, Enhancement of Artillery Simulation Training System by Neural Network, Journal of the Military Operations Research Society of Korea, vol. 34, no. 1, 2008.
  13. G. G. Kim, D. S. Kim, Development and Application of Effect Measurement Tool for Victory Factors in Offensive Operations Using Big Data Analytics, Journal of the Korean Operations Research and Management Science Society, vol. 39, no. 2, 2014. DOI: https://doi.org/10.7737/JKORMS.2014.39.2.111
  14. Y. C. Jung, Big data-Understanding of Communication, Communication books, 2013.
  15. G. H. Kim, Y. G. Kim, S. H. Park, A Framework for Quality Improvement in Weapon System using Post-Logistics Support Data, Journal of the Korea Academia-Industrial cooperation Society, vol. 17, no. 5, pp. 680-687, 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.5.680
  16. U. Fayyad, G. P.-Shapiro, P. Smyth, From data mining to knowledge discovery in databases, AI Magazine, vol. 17, no. 3, pp. 37-54, 1996.