DOI QR코드

DOI QR Code

Detecting Regions of Stenosis and Aneurysm in a 3D Blood Vessel Model

3차원 혈관 모델에서 협착 및 팽창 영역 탐색 방안

  • 박상진 (한국과학기술정보연구원 가상설계센터) ;
  • 김재성 (한국과학기술정보연구원 가상설계센터) ;
  • 박형준 (조선대학교 산업공학과)
  • Received : 2017.12.07
  • Accepted : 2018.01.05
  • Published : 2018.01.31

Abstract

Angiography and CT angiography are used widely for the examination of vascular diseases, but the diagnosis of such diseases is made mostly by the subjective judgment of the inspector. This paper proposes a method for detecting the suspicious regions of stenosis and aneurysm in the inner surfaces of 3D blood vessel models reconstructed from medical images. Initially, the 3D curve-skeletons of the blood vessel models and the contours at the nodes of the curve-skeletons were generated. Next, the 3D curve-skeletons were divided into a set of branches and the areas of normal contours of nodes located in each branch were calculated. The nodes whose contours contain suspicious regions were detected by taking into account the average area, maximum and minimum areas, and the area difference between the adjacent normal contours. The diagnosis of stenosis and aneurysm can be supported by properly visualizing the suspicious regions detected. The suspicious regions of the disease were identified by implementing and testing it using several data sets of human blood vessels, highlighting the usefulness of the proposed method.

혈관 질환 검사는 일반적으로 혈관 조영술(angiography)과 CT 혈관 조영술(CT angiography) 등을 통해 이루어지며, 대부분 검사자의 육안을 통한 주관적 판단에 의존하여 진단이 이루어진다. 본 논문에서는 의료영상으로부터 재구성된 3차원 혈관 내벽 모델로부터 대표적 혈관질환에 해당하는 협착과 팽창 질환 의심 영역을 탐색하는 방안을 제안한다. 먼저, 의료영상에서 재구성된 3차원 혈관 내벽 모델로부터 혈관에 대한 골격 곡선(curve skeletons)과 외곽선(contours)을 생성하고, 생성된 골격 곡선을 가지 단위로 분할한 후, 가지에 속하는 각 노드에 대한 외곽선의 면적을 계산한다. 그런 다음, 계산된 외곽선들의 면적에 대해 평균 면적 및 최대/최소 면적, 그리고 인접 노드들 간의 외곽선 면적 차이를 고려하여 협착 및 팽창 질환의심 영역에 해당하는 노드들을 탐색한다. 다음으로 탐색된 의심 영역들을 적절하게 시각화함으로써 혈관질환의 진단을 지원한다. 제안된 방안을 구현하여 몇 가지 3D 인체 혈관모델에 적용한 결과 질환 의심 영역이 잘 찾아짐을 확인하였다. 이를 통해 제안된 방안의 유용성을 보인다.

Keywords

References

  1. T. Ishii, N. Asuwa, S. Masuda, Y. Ishikawa, "The effects of a myocardial bridge on coronary atherosclerosis and ischaemia", Journal of pathology, vol. 185, no. 1 pp. 4-9, May, 1998. DOI: https://doi.org/10.1002/(SICI)1096-9896(199805) 185:1<4::AID-PATH50>3.0.CO;2-3
  2. J. Shepherd, et al., "Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial", The Lancet, vol. 360, no. 9346 pp. 1623-1630, November, 2002. DOI: https://doi.org/10.1016/S0140-6736(02)11600-X
  3. R. Clarke, L. Daly, K. Robinson, E. Naughten, S. Cahalane, B. Fowler, I. Graham, "Hyperhomocysteinemia: an independent risk factor for vascular disease", New England Journal of Medicine, vol. 324, Issue.17, pp. 1149-1155, April, 1991. DOI: https://doi.org/10.1056/NEJM199104253241701
  4. J. K. Lee, Y. M. Kim, D. Y. Kim, "Segmentation and Visualization of Human Anatomy using Medical Imagery", Korea institute of electronic communication sciences, vol. 8, no. 1, pp. 191-197, 2013. https://doi.org/10.13067/JKIECS.2013.8.1.191
  5. D. J. Brenner, E. J. Hall, "Computed tomography-an increasing source of radiation exposure", New England Journal of Medicine, vol. 357, no. 22, pp. 2277-2284, November, 2007. DOI: https://doi.org/10.1056/NEJMra072149
  6. R. R. Edelman, S. Warach, "Magnetic resonance imaging", New England Journal of Medicine, vol. 328, no. 10, pp. 708-716, 1993. DOI: https://doi.org/10.1056/NEJM199303113281008
  7. J. Dehmeshki, H. Amin, M. Ebadian-Dehkordi, A. Jouannic, S. D. Qanadli, "Computer Aided Detection and Measurement of Abdominal Aortic Aneurysm using Computed Tomography Digital images", ICDS'09 Third International Conference, pp. 339-342, February, 2009. DOI: https://doi.org/10.1109/ICDS.2009.65
  8. J. Dehmeshki, A. Ion, T. Ellis, S. D. Qanadli, "Computer Aided Detection and Measurement of Peripheral Artery Disease", Studies in Health Technology and Informatics, pp. 1153-1157, August, 2014.
  9. A. Chowriappa, et al, "3D Vascular Decomposition and Classifiacation for Computer-Aided Detection", IEEE Transactions on Biomedical Engineering, vol. 60, no. 12, pp. 3514-3523, July, 2013. DOI: https://doi.org/10.1109/TBME.2013.2272721
  10. K. Palagyi, A. Kuba, "Directional 3D Thinning Using 8 Subiterations". Proceedings Discrete Geometry for Computer Imagery. Springer Berlin Heidelberg, pp. 325-336, April, 1999.
  11. D. Haumont, N. Warzee, "Complete polygonal scene voxelization", Journal of Graphics Tools, vol. 7, no. 3, pp. 27-41, April, 2012. DOI: https://doi.org/10.1080/10867651.2002.10487563
  12. W. E. Lorensen, H. E. Cline, "Marching cubes: a high resolution 3D surface construction algorithm". ACM siggraph computer graphics, vol. 21, no. 4, pp. 163-169, July, 1987. DOI: https://doi.org/10.1145/37402.37422
  13. L. P. Chew, 1989, Constrained Delaunay Triangulations, Proceeding SCG '87 Proceedings of the third annual symposium on Computational geometry, pp. 97-108, June, 1987.
  14. S. J. Park, H. Park, "Virtual Navigation of Blood Vessels using 3D Curve-Skeletons", Journal of Computational Design and Engineering, vol. 22, no. 1, pp. 89-99, 2017. DOI: https://doi.org/10.7315/CDE.2017.089
  15. OPENGL, https://www.opengl.org/.