References
- Z. W. Geem, Y. H. Cho, "Optimal design of water distribution networks using parameter-setting-free harmony search for two major parameters", Journal of Water Resources Planning and Management vol. 137, no. 4, pp. 377-380, 2010. DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000130
- K. Deb, H. G. Beyer, "Self-adaptive genetic algorithms with simulated binary crossover", Evolutionary computation, vol. 9, no. 2, pp. 197-221, 2001. DOI: https://doi.org/10.1162/106365601750190406
- A. Ismail, A. P. Engelbrecht, "Self-Adaptive Particle Swarm Optimization", Seal, vol. 7673, 2012. DOI: https://doi.org/10.1007/978-3-642-34859-4_23
- M. G. Omran, A., Salman, A. P. Engelbrecht, "Self-adaptive differential evolution", International Conference on Computational and Information Science. Springer, Berlin, Heidelberg, 2005.
- Z. W. Geem, J. H. Kim, G. V. Loganathan, "A new heuristic optimization algorithm: harmony search", simulation, vol. 76, no. 2, pp. 60-68, 2001 https://doi.org/10.1177/003754970107600201
- J. H. Kim, Z. W. Geem, E. S. Kim, "Parameter estimation of the nonlinear Muskingum model using harmony search", JAWRA Journal of the American Water Resources Association, vol. 37, no. 5, pp. 1131-1138, 2001. DOI: https://doi.org/10.1111/j.1752-1688.2001.tb03627.x
- Glover, F. "Heuristics for integer programming using surrogate constraints." Decision Sciences 8.1 (1977): 156-166. DOI: https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
- S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, "Optimization by simulated annealing", science vol. 220, no. 4598, pp. 671-680, 1983. https://doi.org/10.1126/science.220.4598.671
- M. Dorigo, "Optimization, learning and natural algorithms", Ph. D. Thesis, Politecnico di Milano, Italy, 1992.
- R. Eberhart, J. Kennedy, "A new optimizer using particle swarm theory", Micro Machine and Human Science, Proceedings of the Sixth International Symposium on IEEE, 1995. DOI: https://doi.org/10.1109/MHS.1995.494215
- M.Mahdavi, M. Fesanghary, E. Damangir, "An improved harmony search algorithm for solving optimization problems", Applied mathematics and computation, vol. 188, no. 2, pp. 1567-1579 2007. DOI: https://doi.org/10.1016/j.amc.2006.11.033
- M. G. Omran, M. Mahdavi, "Global-best harmony search", Applied mathematics and computation, vol. 198, no. 2, pp. 643-656, 2008. DOI: https://doi.org/10.1016/j.amc.2007.09.004
- Q. K. Pan, P. N. Suganthan, M. F. Tasgetiren, J. J. Liang, "A self-adaptive global best harmony search algorithm for continuous optimization problems", Applied Mathematics and Computation, vol. 216, no. 3, pp. 830-848, 2010. DOI: https://doi.org/10.1016/j.amc.2010.01.088
- C. M. Wang, Y. F. Huang, "Self-adaptive harmony search algorithm for optimization", Expert Systems with Applications, vol. 37, no. 4, pp. 2826-2837, 2010. DOI: https://doi.org/10.1016/j.eswa.2009.09.008
- S. O. Degertekin, "Improved harmony search algorithms for sizing optimization of truss structures", Computers and structures, vol. 92, pp. 229-241, 2012. DOI: https://doi.org/10.1016/j.compstruc.2011.10.022
- J. Chen, H. F. Man, Y. M. Wang, "Novel Self-adaptive Harmony Search Algorithm for continuous optimization problems", Control Conference (CCC), 2011 30th Chinese. IEEE, 2011.
- K. Luo, "A novel self-adaptive harmony search algorithm", Journal of Applied Mathematics, vol. 2013, 2013. DOI: http://dx.doi.org/10.1155/2013/653749
- Z. W. Geem, "Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search", Journal of Hydrologic Engineering, vol. 16, no. 8, pp. 684-688, 2010. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000352
- S. Jiang, Y. Zhang, P. Wang, M. Zheng, "An almost-parameter-free harmony search algorithm for groundwater pollution source identification", Water Science and Technology, vol. 68, no. 11, pp. 2359-2366, 2013. DOI: https://doi.org/10.2166/wst.2013.499
- Z. W. Geem, K. B. Sim, "Parameter-setting-free harmony search algorithm", Applied Mathematics and Computation, vol. 217, no. 8, pp. 3881-3889, 2010. DOI: https://doi.org/10.1016/j.amc.2010.09.049
- Z. W. Geem, "Economic dispatch using parametersetting- free harmony search", Journal of Applied Mathematics, vol. 2013, 2013.
- S. Kulluk, L. Ozbakir, A. Baykasoglu, "Self-adaptive global best harmony search algorithm for training neural networks", Procedia Computer Science vol. 3, pp. 282-286, 2011. DOI: https://doi.org/10.1016/j.procs.2010.12.048
- A. Kattan, A. Rosni, "A dynamic self-adaptive harmony search algorithm for continuous optimization problems", Applied Mathematics and Computation, vol. 219, no. 16, pp. 8542-8567, 2013. DOI: https://doi.org/10.1016/j.amc.2013.02.074
- D. S. Rani, N. Subrahmanyam, M. Sydulu, "Self adaptive harmony search algorithm for optimal capacitor placement on radial distribution systems", Energy Efficient Technologies for Sustainability (ICEETS), 2013 International Conference on. IEEE, 2013. DOI: https://doi.org/10.1109/ICEETS.2013.6533580
- L. Wang, R. Yang, Y. Xu, Q. Niu, P. M. Pardalos, M. Fei, "An improved adaptive binary harmony search algorithm", Information Sciences, vol. 232, pp. 58-87, 2013. DOI: https://doi.org/10.1016/j.ins.2012.12.043
- B. Naik, J. Nayak, H. S. Behera, A. Abraham, "A self adaptive harmony search based functional link higher order ANN for non-linear data classification", Neurocomputing, vol. 179, pp. 69-87, 2016. DOI: https://doi.org/10.1016/j.neucom.2015.11.051
- A. Rajagopalan, V. Sengoden, R. Govindasamy, "Solving economic load dispatch problems using chaotic self‐adaptive differential harmony search algorithm", International Transactions on Electrical Energy Systems, vol. 25, no. 5, pp. 845-858, 2015. DOI: https://doi.org/10.1002/etep.1877
- M. Shivaie, M. T. Ameli, M. S. Sepasian, P. D. Weinsier, V. Vahidinasab, "A multistage framework for reliability-based distribution expansion planning considering distributed generations by a self-adaptive global-based harmony search algorithm", Reliability Engineering & System Safety, vol. 139, pp. 68-81, 2015. DOI: https://doi.org/10.1016/j.ress.2015.03.001
- M. Z. Vahid, M. O. Sadegh, "A new method to reduce losses in distribution networks using system reconfiguration with distributed generations using self-adaptive harmony search algorithm", Fuzzy and Intelligent Systems (CFIS), 2015 4th Iranian Joint Congress on. IEEE, 2015. DOI: https://doi.org/10.1109/CFIS.2015.7391655
- H. H. Yan, J. H. Duan, B. Zhang, Q. K. Pan, "Harmony search algorithm with self-adaptive dynamic parameters", Control and Decision Conference (CCDC), 2015 27th Chinese. IEEE, 2015. DOI: https://doi.org/10.1109/CCDC.2015.7162104
- F. Zhao, Y. Liu, C. Zhang, J. Wang, "A self-adaptive harmony PSO search algorithm and its performance analysis", Expert Systems with Applications, vol. 42, no. 21, pp. 7436-7455, 2015. DOI: https://doi.org/10.1016/j.eswa.2015.05.035
- V. Kumar, J. K. Chhabra, D. Kumar, "Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems", Journal of Computational Science, vol. 5, no. 2, pp. 144-155, 2014. DOI: https://doi.org/10.1016/j.jocs.2013.12.001
- X. Dai, X. Yuan, Z. Zhang, "A self-adaptive multi-objective harmony search algorithm based on harmony memory variance", Applied Soft Computing, vol. 35, pp. 541-557, 2015. DOI: https://doi.org/10.1016/j.asoc.2015.06.027
- P. Sabarinath, M. R. Thansekhar, R. Saravanan, "Multiobjective optimization method based on adaptive parameter harmony search algorithm", Journal of Applied Mathematics, vol. 2015, 2015.
- L. A. Rastrigin, "Systems of extremal control. Theoretical Foundations of Engineering Cybernetics Series", Nauka, Moscow, 1974.
- L. C. W. Dixon, "The global optimization problem: an introduction", Towards Global Optimiation vol. 2, pp. 1-15, 1978.
- M. Molga, C. Smutnicki, "Test functions for optimization needs", Test functions for optimization needs, 2005.
- D. G. Yoo, H. M. Lee, A. Sadollah, J. H. Kim, "Optimal pipe size design for looped irrigation water supply system using harmony search: Saemangeum project area", The Scientific World Journal, vol. 2015, 2015. DOI: http://dx.doi.org/10.1155/2015/651763