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Robustizing Kalman filters with the M-estimating functions
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Abstract

This article considers a robust Kalman filter from the M-estimation point of view. Pak (Journal of the Korean
Statistical Society, 27, 507-514, 1998) proposed a particular M-estimating function which has the data-based
shaping constants. The Kalman filter with the proposed M-estimating function is considered. The structure and
the estimating algorithm of the Kalman filter accompanying the M-estimating function are mentioned. Kalman
filter estimates by the proposed M-estimating function are shown to be well behaved even when data are contam-
inated.
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1. Introduction

The Kalman filter, named after Rudolf E. Kalman (1960), has been an important algorithm in the fields
of control theory and time series analysis. The Kalman filter leads the estimators of the signal or the
state of an state-space model. Its usefulness and versatility have prevailed with adequate performance
when observations are made online. Recently, it has become a major tool for artificial intelligence and
robotics utilizing big data (Thrun, 2002) as well as for space time series analysis (Lee and Kim, 2010;
Lee, et al., 2011).

The Kalman filter uses the mean squared error (MSE) as a criterion of optimality but this criterion
exaggerates the magnitude of errors. Therefore, the estimates of the signals are heavily influenced by
abnormal observations or outliers. There have been numerous attempts to make the Kalman filter ro-
bust against abnormal observations based on M-estimation methodology (Ruckdeschel, 2000; Gandhi
and Mili, 2010).

In order to use M-estimating functions, we need the values of shaping constants such as ‘cut-off
constant’, ‘bending constant’, or ‘tuning constant’. In the previous works by Ruckdeschel (2000) and
by Gandhi and Mili (2010), these constants are usually fixed or predetermined while updating the
estimates for the signals themselves. However, the M-estimating function proposed by Pak (1998) is
actually based on data-driven shaping constants, so that those constants can be easily updated as an
observation comes in or as the iteration continues. As a result, it is found out that the Kalman filter
with the proposed M-estimating function performs very stably under contaminated situations.

It should be noted that this article is not actually talking about M-estimation on the Kalman fil-
ter, rather it uses the M-estimating function themselves to handle unusual observations. In order to
carry out the Kalman filtering stably with unusual observations, this article concerns to utilize the
M-estimating functions to treat those observations. Robustly estimating the Kalman filter is another
difficult problem that needs to be solved.
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2. Kalman filter

This section is based on the references by Brockwell and Davis (1986) and by Kay (1993). Assume
that the M x 1 signal vector x[n] follows the vector state-vector observation model (or the state-space
model):

s[n] = As[n — 1]+ Bu[n], n=>0, 2.1)

where A, B are known p X p and p X r matrices, u[n] is vector white Gaussian noise (WGN) with
u[n] ~ N(0,Q), s[-1] ~ N(us, Cs), and s[—1] is independent of the u[n]’s. The observations are
modeled as

x[n] = H[n]s[n] + w[n], 2.2)

where H[rn] is a known M X p matrix, and x[n] is an M X 1 observation vector, and w[n] isa M X 1
observation noise sequence. The w[n]’s are independent of each other and of u[n] and s[-1], and
w(n] ~ N0, C[n]).

The estimator of s[n]

S[nin] = E (s[n]Ix[0], x[1],...,x[n])
can be sequentially obtained in the following manner:
e Step 0. Initialization:

§[-1]-1]=ps and M[-1|-1] = Ci.

Step 1. Prediction:

Snln — 11 = A8[n — 1jn — 1]. 2.3)

Step 2. Mean squared error matrix for prediction:

M[njn — 1] = AM[n - 1jn — 1]AT + BQB”. (2.4)
e Step 3. Kalman gain:
K(n] = M[nln - 1JH" [n] (C[n] + H[n]M[nn — 1]HT[n])_l . (2.5)
e Step 4. Correction:
§[nin] = 8[njn — 1] + K[n] (x[n] — H[n]8[n}n — 1]). (2.6)

Step 5. Mean squared error matrix for correction:

M([n|n] = (I - K[n]H[n]) M[n|n — 1]. 2.7)
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Figure 1: Examples of yr, and y,.

3. M-estimation

M-estimation is a representative statistical method to estimate parameters robustly. The content in this
section are based mainly on the books by Huber and Ronchetti (2009) and by Hampel et al. (2011).
The M-estimation has roots on minimization problems such as the least squares estimation. Huber
(1964) proposed the estimating method as a minimization problem for a parameter 6 such as

0=arg min [Z o(X;, 9)] , (3.1)

i=1

when the random samples {X},...,X,} from a density f(x,6) are given. If the p(r) is r2, the M-
estimation is nothing but the least squares estimation and if the p(r) is — log f(r), the M-estimation is
equivalent to the maximum likelihood estimation.

The minimization problem is actually turned to solve

n n
d
—p(X;,0) = X;,60) =0, =p. 32
;dgm );mm w=p (3.2)
For example, a representative y-function, which was proposed by Huber (1964), is
] |rl < b,
Yn(r) = { c - sgn(r), |r| > b,

for a given cutoff constant b. The Huber’s M-estimating function was designed to bound the influence
of outlying observations (Figure 1).
However, Pak (1998) introduced a new type of M-estimating function as

72
We(r) = rexp {_m},

where the £ is a bandwidth of a density estimator, and the o is a standard deviation (Figure 1). The
above iJ.-function is a redescending and differentiable everywhere unlike the other y-functions. In
practice, it is needed to replace o by the sample standard deviation or by a robust estimator like the
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median absolute deviance (MAD). The & can be replaced by the optimal bandwidth proposed by Scott
(2009), Silverman (1986), or Sheather and Jones (1991). As h and o approach to 0, a y,(r) then
becomes just r, which produces the least squares estimator (LSE) or in some cases the maximum
likelihood estimator (MLE). The asymptotic properties about the estimator with a ¢, are the same as
those of the LSE or the MLE. Details can be found in Pak (1998) but we briefly explain below how to
get the above y,-function.

Let go(x) € L, be a family of probability densities indexed by 6 and let p(x) € L, be a density
estimator for go(x) such as

]

where K(-) is a kernel density and & is a window width (or bandwidth). The estimator # which
minimize the L, distance,

f (p(3) — golx))d,

is called the minimum L, distance estimator. Minimizing the above L, distance to get an estimator is
equivalent to solve the equation,

f (p(x) — go(x))Vego(x)dx = 0,
which is also equivalent to solve
f P(X)Vago(x)dx =0 (3.3)

because [ go(x)Vgo(x)dx = (1/2)Vy [ g2(x)dx = 0.
The equation (3.3) can be rewritten as

S f K (S22 g = 0,

and then an M-estimating function ¢ is defined as

1 X — Xi
06,0 =0 [ K (5 saod. (3.4
For example, if gy is N(u, o) and K(r) = (1/ V2r) exp{—*/2} (Gaussian kernel) then [ h~'K{h~'(x —
X:)}go(x)dx becomes N(u, h* + o). After dropping unnecessary coefficients, we have

2
We(r) = rexp {—m},

where the g stands for the Gaussian. The ¥,(r) can be thought as (r)x (weighting factor), which
controls the magnitude of r exponentially. We will use this i, ()-function in robustizing the Kalman
filter.
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4. Robust scalar Kalman filter

For simplicity, we assume that the signals follow the scalar Gauss-Markov signal model (or state
model);

s[n] = as[n—11+u[n], n<O0, 4.1

where a is a scalar coeflicient, and u[n] is a Gaussian noise with a variance o’ﬁ, s[—1] ~ N(us, o-?),
and s[—1] is independent of u[n] for all » > 0. Also, assume that the observations follow the scalar
observation model;

x[n] = s[n] + win], “4.2)

where w([n] is zero mean Gaussian noise with a variance a'ﬁ,.

We can summarize the algorithm for the scalar state-scalar observation Kalman filter according to
the following steps.

Prediction : S[njn — 1] = as[n — 1jn — 1]
Prediction MSE : M[n|n — 1] = a*M[n — 1|n — 1] + o>

K] = M= 1]
Kalman gain : K[n] = o2+ Mlnln - 1]
Correction : §[n|n] = a$[nln — 11 + K[n](x[n] — §[nln — 17)

MSE : M[n|n] = (1 — K[n]))M[njn — 1]
The robust version of the Kalman filter can be proposed by replacing (4.3) by
S[nin] = 8nin — 11 + K[nlyg(x[n] - S[nln — 11)
in order to bound the influence of the one-stop prediction error. The signal estimate is then

S[nln] = a8[n — 1in — 1] + K[n]y,(x[n] — 8[n|n — 1]).

5. Data analysis

Suppose that the data are from x[n] = s[n] + w[n], w[n] ~ N(O, 1) and N(0,4) and the signal model is
an autoregressive model of order 1, AR(1), s[n] = 0.9s[n — 1] + u[n] for n > 1, where u[n] ~ N(0, 1)
and s[1] = 1. Five hundreds sets of fifty observations are generated based on the above model. In
order to verify the robustness of the signal estimates, we simulated the contaminated data sets with
the 10% and 20% of the observations replaced by the number 5 or —5 on purpose. We estimate the
signal by the Kalman filter algorithm: (1) without using an M-estimating function, (2) with the
along with &, and the bandwidth by Scott (2009) (bw.nrd), and (3) with the i, along with MAD and
the bandwidth by Sheather and Jones (1991) (bw.SJ). An initial signal estimate is assumed to be 0.
The true signal (- - -), the ten examples of the signal estimates (- - -), the mean of the all signal
estimates (—) and an sample of observations (e) are plotted in Figure 2. We can observe that the
¥, with MAD and bw.SJ produces stable and robust signal estimates in Figure 2(c) and Figure 3(c)
while the other signal estimates in Figure 2(a) and (b) are heading toward the outlying observations
which are either 5 or —5. When we use i, with MAD and bw.SJ, the minimum squared errors of the
estimates from the true signals are actually smaller than the other cases (Table 1). However, when
the error variances are large, for example o2 is 4 in this case, the minimum squared errors tend to
be relatively larger than when o2 is 1 (Table 2). In fact, the M-estimating function i, is designed to
handle a location parameter so that when the variance is large, the performance is relatively poor.
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Figure 2: Simulation results when the error is N(0, 1). bw.nrd = bandwidth by Scott (2009); bw.SJ = bandwidth
by Sheather and Jones (1991); MAD = median absolute deviance.
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Figure 3: Simulation results when the error is N(0,4). bw.nrd = bandwidth by Scott (2009); bw.SJ = bandwidth
by Sheather and Jones (1991); MAD = median absolute deviance.
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Table 1: minimum squared error statistics when o2 = 1

Contamination Min Ist quarter Median Mean 3rd quarter Max
Without i/-function
0% 4.422 5.563 5.946 5.989 6.365 8.050
10% 9.913 10.843 11.175 11.211 11.564 12.969
20% 16.810 18.170 18.540 18.550 18.930 20.180
With ¢,-function; o = sample standard deviation, 4 = bw.nrd
0% 1.015 1.780 2.060 2.058 2314 3.162
10% 1.438 2.294 2.564 2.585 2.859 3.942
20% 1.615 2.558 2.892 2.946 3.274 4.995
With ¢,-function; o = MAD, h = bw.SJ
0% 0.573 1.440 1.720 1.736 2.009 3.280
10% 0.679 1.491 1.779 1.775 2.017 3.335
20% 0.301 1.047 1.261 1.2897 1.526 2.794

bw.nrd = bandwidth by Scott (2009); MAD = median absolute deviance; bw.SJ = bandwidth by Sheather and Jones (1991).

Table 2: minimum squared error statistics when o2 = 4

Contamination Min 1st quarter Median Mean 3rd quarter Max
Without i,-function
0% 4422 5.563 5.946 5.989 6.365 8.050
10% 9.913 10.843 11.175 11.211 11.564 12.969
20% 16.810 18.170 18.540 18.550 18.930 20.180
With y,-function; o = sample standard deviation, 4 = bw.nrd
0% 0.811 1.846 2.335 2.358 2.793 4.775
10% 1.227 2.444 2.900 2.977 3.432 6.523
20% 2.549 5.180 6.647 6.754 8.242 12.537
With y,-function; o = MAD, h = bw.SJ
0% 0.540 1.872 2.396 2.436 2.954 5.614
10% 0.508 1.399 1.843 1.945 2.288 7.145
20% 0.537 1.381 1.865 2.374 2.773 10.664

bw.nrd = bandwidth by Scott (2009); MAD = median absolute deviance; bw.SJ = bandwidth by Sheather and Jones (1991).

6. Summary

We have demonstrated to run the Kalman filter with a special M-estimating function as well as in-
dicated that the estimated signal can cope with unusual observations. This article utilized the M-
estimating functions to treat those observations in order to conduct the Kalman filtering stably with
unusual observations. The robustly estimating the Kalman filter is another difficult problem that needs
to be solved. In this article, only the scalar Kalman filter has been treated, though an idea how to ex-
tend the proposed methodology to the multivariate situation, but has to be fully studied in the future.
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