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Abstract
In this paper, we show that there exists an optimal investment policy for the surplus in a risk model, in which

the surplus is continuously invested to other business at a constant rate a > 0, whenever the level of the surplus
exceeds a given threshold V > 0. We assign, to the risk model, two costs, the penalty per unit time while the level
of the surplus being under V > 0 and the opportunity cost per unit time by keeping a unit amount of the surplus.
After calculating the long-run average cost per unit time, we show that there exists an optimal investment rate
a∗ > 0 which minimizes the long-run average cost per unit time, when the claim amount follows an exponential
distribution.
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1. Introduction

Cho et al. (2016) introduced a continuous time surplus process in a risk model which involves a
continuous type investment. The surplus in the risk model linearly increases at a constant rate c > 0
due to the incoming premium. Meanwhile, claims arrive according to a Poisson process of rate λ >
0 and decrease the level of the surplus jump-wise by random amounts which are independent and
identically distributed with distribution function G of mean µ > 0. Whenever the level of the surplus
exceeds a given threshold V > 0, the investment of the surplus to other business is continuously made
at a constant rate a (0 < a < c), until the surplus process goes below V > 0. The investment starts
again, if the level of the surplus goes over V > 0.

It is assumed that c is larger than λµ, the expected total amount of claims per unit time, however,
c − a is assumed to be less than λµ to keep the surplus process from being infinitely large. Cho et
al. (2016) obtained the stationary distribution of the surplus level by forming martingales from the
surplus process and applying the optional sampling theorems to the martingales. They also obtained
the moment generating function of the stationary distribution by establishing and solving an integro-
differential equation for the distribution function of the surplus level.

In this paper, we study an optimal investment policy for the surplus in the risk model introduced
by Cho et al. (2016). After assigning, to the risk model, two costs which are the penalty per unit time
while the level of the surplus being under V > 0 and the opportunity cost per unit time by keeping
a unit amount of the surplus, we show that there exists an optimal investment rate a∗ > 0 which
minimizes the long-run average cost per unit time.
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The classical risk model has been studied by many authors, for examples, Gerber (1990), Dufresne
and Gerber (1991), and Gerber and Shiu (1997), by assuming that a ruin occurs if the surplus becomes
negative. They have studied the ruin probability of the surplus and some interesting characteristics,
such as the time of ruin, the surplus before ruin and the deficit at ruin. The core result on the ruin
probability is well summarized in Klugman et al. (2004). Dickson and Willmot (2005) calculated the
density of the time of ruin by inverting its Laplace transform.

However, in all of the above works, the surplus process is assumed to stop if the ruin occurs. Cho
et al. (2013) introduced a risk model where the surplus process continues to move even though the
level of the surplus becomes negative and an investment of the surplus is made, by a fixed amount, to
other business jump-wise and instantly, if the level of the surplus reaches a given level. They obtained
the characteristic functions of the transient and stationary distributions of the surplus process.

Lim et al. (2016) studied an optimal investment policy in the risk model introduced by Cho et al.
(2013). After assigning, to the risk model, the reward of the investment, the penalty of the surplus
being short and the opportunity cost of keeping the surplus, they showed that there exists a unique
amount of the surplus being invested, which minimizes the long-run average cost per unit time.

In Section 2, we review some interesting characteristics of the risk model obtained by Cho et
al. (2016) which are needed for the optimization. In Section 3, we assign, to the risk model, two
costs which are the penalty per unit time while the level of the surplus being under V > 0 and the
opportunity cost per unit time by keeping a unit amount of the surplus, and calculate the long-run
average cost per unit time. In Section 4, by assuming that the amount of each claim independently
follows an exponential distribution of mean µ > 0, we show that there exists a unique value a∗ > 0 of
the investment rate, which minimizes the long-run average cost per unit time.

2. Interesting characteristics

In this section, we summarize several interesting characteristics in Cho et al. (2016), which are
necessary to study the optimal investment policy. Cho et al. (2016) decomposed {U(t), t ≥ 0} into two
processes {U1(t), t ≥ 0} and {U2(t), t ≥ 0}. U1(t) is formed by separating the periods where U(t) ≥ V
from the original process and connecting them together. U2(t) is similarly formed by separating the
periods where U(t) ≤ V from the original process and connecting them together.

We, first, summarize the interesting characteristics of {U1(t), t ≥ 0}. The detailed proofs of the
following propositions are given in Cho et al. (2016).

Proposition 1. Let T1 denote the length of a cycle between two successive regeneration points
where U1(t) = V, then

E(T1) =
E

(
Y2

)
2µ[λµ − (c − a)]

,

where Y denotes the claim amount following distribution function G.

Proposition 2. Let Pu
x be the probability that U1(t), starting from u (V ≤ u ≤ x), reaches x ≥ V

before it goes below V, and let Pu
V be the probability that U1(t) goes below V without reaching x ≥ V,

then

Pu
x =

eθu − eθV MYe (−θ)
eθx − eθV MYe (−θ)

= 1 − Pu
V ,
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where MYe (−θ) = {1/(µθ)}[1 − MY (−θ)], MY (r) =
∫ ∞

0 erydG(y), and θ > 0 is the solution of

d(r) = r(c − a) + λ{MY (−r) − 1} = 0.

Proposition 3. Let F1(x) be the stationary distribution function of U1(t), then

F1(x) = 1 − PV
x

P(x−Ye)∨V
V

, for V ≤ x < ∞,

where P(x−Ye)∨V
V = 1−Ge(x−V)+

∫ x−V
0 Px−y

V dGe(y) with Ge being the equilibrium distribution function
of G, Ye is the random variable having Ge as its distribution function, and a ∨ b denotes the larger
one of a and b.

Remark 1. In the earlier analysis of Cho et al. (2016), F1(x) was calculated as

F1(x) = 1 − PV
x

Px−Ye
V

, for V ≤ x < ∞,

which is wrong, however, since F1(V) , 0 in this formula. Observe that U1(t) ≥ V , almost every-
where, except the points where U1(t) goes below V due to the claims.

We, now, summarize the interesting characteristics of {U2(t), t ≥ 0}. The detailed proofs of the
following propositions are given in Cho et al. (2016).

Proposition 4. Let T2 denote the length of a cycle between two successive regeneration points
where U2(t) = V, then

E(T2) =
E

(
Y2

)
2µ(c − λµ)

.

Proposition 5. Let M2(r) be the moment generating function of the stationary distribution function
F2(x) of U2(t), then

M2(r) =
2erV (c − λµ)[µr − 1 + MY (−r)]

rE(Y2)[cr − λ + λMY (−r)]
.

3. Long-run average cost

In this section, we assign the following two costs to the risk model:

(i) b is the penalty per unit time while the surplus is under level V . V may be considered as the
required level of the surplus for payments by the government.

(ii) h is the opportunity cost incurred by keeping a unit amount of the surplus per unit time without
using (investing) it.

These two are typical costs when we manage the surplus in a risk model. The first one increases as
the investment rate a increases, meanwhile, the second one decreases as a increases. With these two
costs being assigned to the risk model, we will study whether there exists an optimal investment rate
a.
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By making use of the propositions in Section 2, we can calculate the long-run average cost per
unit time. To do that, we, first, obtain the long-run average level of the original surplus process
{U(t), t ≥ 0}.

Let E(U) = limt→∞ E[U(t)] the stationary expectation of {U(t), t ≥ 0}. Observe that the original
process, U(t), is also a regenerative process with cycles in which the cycles of U1(t) and U2(t) al-
ternate with weights E(T1) and E(T2), which are the expected lengths of cycles of U1(t) and U2(t),
respectively. Hence, from the renewal reward theorem of Ross (1996, pp. 133–135), the stationary
expectation of U(t) is given by

E[U] =
E(T1)E(U1) + E(T2)E(U2)

E(T1) + E(T2)
,

where E(U1) and E(U2) are the stationary expectations of {U1(t), t ≥ 0} and {U2(t), t ≥ 0}, respectively.
E(U1) can be obtained from Proposition 3 in Section 2, which is

E(U1) =
∫ ∞

V
xdF1(x).

In the next section, we will calculate E(U1), when G is an exponential distribution of mean µ. E(U2)
can be obtained from Proposition 5 in Section 2, which is

E(U2) =
d
dr

M2(r)|r=0.

In the next section, we will calculate E(U2), when G is an exponential distribution of mean µ.
Finally, noting that T1 + T2 forms a regeneration cycle of {U(t), t ≥ 0}, we can show, from the

renewal reward theorem of Ross (1996, pp. 133–135), that the long-run average cost per unit time, as
a function of the investment rate a, is given by

C(a) =
bE(T2)

E(T1) + E(T2)
+ hE(U), for c − λµ < a < c.

Recall that the investment rate a is assumed to be less than the premium rate c and that c−a is assumed
to be less than λµ, the expected total amount of claims per unit time, to keep the surplus process from
being infinitely large.

If the distribution function G of the claim amount is given, we may obtain C(a) in a more closed
form, and hence, we can find, numerically, the optimal investment rate a, even though the formula of
C(a) may be complicate. If G is an exponential distribution, however, we can find the explicit formula
of the optimal investment rate a which minimizes C(a).

4. An optimal investment policy

In this section, we assume that the amount Y of each claim, independently, follows an exponential
distribution of mean µ > 0, and show that there exists an optimal investment rate a∗ > 0 which
minimizes the long-run average cost per unit time.

We, first, calculate F1(x) and E(U1). Since MY (r) = 1/(1 − µr), for r < 1/µ, the unique solution
of d(r) = 0 in Proposition 2 is given by

θ =
λµ − (c − a)

(c − a)µ
> 0.
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Moreover, MYe (−θ) = (c − a)/λµ, and hence, Pu
x and Pu

V , in Proposition 2, are

Pu
x =

eθu + µθeθu − eθV

eθx + µθeθx − eθV
= 1 − Pu

V , for V ≤ u ≤ x.

To obtain F1(x) in Proposition 3, we need to find PV
x and P(x−Ye)∨V

V . From the above equation,

PV
x =

µθeθV

eθx + µθeθx − eθV

and from Proposition 3,

P(x−Ye)∨V
V = 1 −Ge(x − V) +

∫ x−V

0
Px−y

V dGe(y),

where Ge(y) = 1 − e−y/µ, since G is the exponential distribution with mean µ, and

Px−y
V =

(1 + µθ)
(
eθx − eθ(x−y)

)
eθx + µθeθx − eθV

.

After tedious calculation, we can show that

P(x−Ye)∨V
V =

µθeθx

eθx + µθeθx − eθV
.

Hence, from Proposition 3, F1(x) is given by

F1(x) = 1 − e−θ(x−V), for x ≥ V,

which turns out to be a shifted exponential distribution. Therefore, E(U1) is

E(U1) = V +
1
θ
= V +

(c − a)µ
λµ − (c − a)

.

Now, to obtain E(U2), we differentiate M2(r), in Proposition 5, once with respect to r and let
r → 0. By applying the L’Hôspital’s rule twice, we have

E(U2) =
(c − λµ)

[
2VE(Y) − E

(
Y2

)]
− λE(Y)E

(
Y2

)
2(c − λµ)E(Y)

.

Since Y is an exponential random variable with mean µ, E(Y) = µ, and E(Y2) = 2µ2, and hence,
E(U2) becomes

E(U2) = V − cµ
c − λµ .

E(T1) in Proposition 1 and E(T2) in Proposition 4 are, now, respectively,

E(T1) =
µ

λµ − (c − a)
and E(T2) =

µ

c − λµ .
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Therefore, E(U), in Section 3, is given by

E[U] = V +
µ
[
c(c − a) − λ2µ2

]
(c − λµ)[λµ − (c − a)]

.

Finally, the long-run average cost per unit time C(a), in Section 3, becomes

C(a) =
b[λµ − (c − a)]

a
+ hE(U), for c − λµ < a < c.

We, now, show that there exists a unique value a∗ > 0 of the investment rate, which minimizes
C(a).

Theorem 1. If b(c − λµ) > hc2/λ, C(a) is minimized at

a∗ =
b(c − λµ)2 +

√
bhλµ2(c − λµ)3

b(c − λµ) − hλµ2 ,

otherwise, C(a) is minimized at a∗ = c.

Proof: Differentiating C(a) with respect to a gives

C′(a) =
b(c − λµ)

a2 − hλµ2

[λµ − (c − a)]2 .

Reducing two fractions to a common denominator, we have

C′(a) =

[
b(c − λµ) − hλµ2

]
a2 − 2b(c − λµ)2a + b(c − λµ)3

a2[λµ − (c − a)]2 .

Let N(a) denote the numerator of C′(a). Observe that N(a) is a quadratic function and N(a) = 0
has two real valued solutions which are

a1 =
b(c − λµ)2 +

√
bhλµ2(c − λµ)3

b(c − λµ) − hλµ2 and a2 =
b(c − λµ)2 −

√
bhλµ2(c − λµ)3

b(c − λµ) − hλµ2 .

Note that a1 is positive if and only if the coefficient of the quadratic term, b(c − λµ) − hλµ2, say Q, is
positive and that a2 is always positive regardless of the sign of Q. Moreover, observe that

N(0) = b(c − λµ)3 > 0,

N(c − λµ) = −hλµ2(c − λµ)2 < 0,

N(c) =
[
bλ(c − λµ) − hc2

]
λµ2.

Therefore, we may consider the following four exclusive cases:

(i) When b(c − λµ) > hc2/λ,

N(c) > 0 and the coefficient of the quadratic term Q > 0 (since c > λµ), hence, 0 < a2 < c−λµ <
a1 < c and N(a) is strictly increasing in c − λµ < a < c, that is, C(a) is minimized at a = a1.
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(ii) When hλµ2 < b(c − λµ) ≤ hc2/λ,

N(c) ≤ 0 and Q > 0, hence, 0 < a2 < c − λµ < c ≤ a1 and N(a) ≤ 0 in c − λµ < a < c, that is,
C(a) is minimized at a = c.

(iii) When b(c − λµ) = hλµ2,

N(c) < 0 and Q = 0, hence, N(a) is linearly decreasing and N(a) < 0 in c − λµ < a < c, that is,
C(a) is minimized at a = c.

(iv) When b(c − λµ) < hλµ2,

N(c) < 0 and Q < 0, hence, a1 < 0 < a2 < c − λµ and N(a) < 0 in c − λµ < a < c, that is, C(a)
is minimized at a = c.

In summary, when b(c − λµ) > hc2/λ,C(a) is minimized at a = a1, otherwise, C(a) is minimized at
a = c. �
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