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A note on the test for the covariance matrix under
normality
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Abstract

In this study, we consider the likelihood ratio test for the covariance matrix of the multivariate normal data.
For this, we propose a method for obtaining null distributions of the likelihood ratio statistics by the Monte-
Carlo approach when it is difficult to derive the exact null distributions theoretically. Then we compare the
performance and precision of distributions obtained by the asymptotic normality and the Monte-Carlo method
for the likelihood ratio test through a simulation study. Finally we discuss some interesting features related to the
likelihood ratio test for the covariance matrix and the Monte-Carlo method for obtaining null distributions for the
likelihood ratio statistics.
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1. Introduction

The inferences about scale parameter or variance in the univariate case, have many results shown in
the literature. Especially, the likelihood ratio (LR) procedure for testing the problem for variance
has been completely achieved and verified for its efficiency and uniqueness under normality. For
example, LR test statistics follow exactly the chi-square distributions under the null hypothesis and
the LR tests themselves are optimal in the sense of power of test. However for the multivariate case
with multivariate normality, only asymptotic procedures are available even though the statistics for the
covariance matrix have been derived by applying the LR principle. The reason for this phenomenon
may come from the fact that the distributional theories for the matrix-valued statistics have not been
fully investigated. Any prospect for the theoretic development would also not be seen in any near
future because of complexity or non-existence of distributions for matrix-valued statistics. For this
reason, several modifications with high dimensional cases have been reported (Bai et al., 2009; Cai
and Ma, 2013; Gupta and Bodnar, 2014) or applications of the bootstrap method, which is a re-
sampling method, have been applied (Beran and Srivastava, 1985). Pinto and Mingoti (2015) also
performed a comparison study for the asymptotic LR test with the VMAX proposed by Costa and
Machado (2008).

For the test procedure of the covariance matrix, the LR functions have been mainly expressed
with the corresponding eigenvalues of the sample covariance matrix. Even though the eigenvalues
of a sample covariance matrix may consist of a vector instead of a matrix, discussions of the distri-
butions and their properties for the LR functions or related statistics have not been fully investigated
or justified in a theoretic manner. All the results up to this date, have been confined only to limiting
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distributions based on log likelihood arguments. Therefore we may question how close the limiting
distributions are to the exact ones if they are obtainable or whether the conclusions based on the lim-
iting distributions would be reliable when the p-values are too close to a significance level, say 0.05.
For those reasons, it would be necessary to achieve a sensible and reasonable method to obtain the
null distributions of LR functions or related statistics.

In the multivariate analysis under normality, the distributions of LR statistics have been fully stud-
ied and tabulated systematically for many cases. However when it would be difficult to derive the
exact distributions theoretically, one may consider deriving the limiting distributions asymptotically
which may be obtained using log likelihood arguments. However, one may obtain null distributions
using one of the popular re-sampling methods such as bootstrap or permutation methods that are heav-
ily dependent on the computer power and its facilities. Along with this, one may also obtain the null
distribution of an LR statistic, LR, in the following idea and rationale. For this discussion, let £¢(LR)
be the expectation of LR under the null hypothesis. Since we can generate pseudo random vectors by
the scenario of the null hypothesis, we may consider the computed quantity of LR with the generated
pseudo random vectors an unbiased estimator of Ey(LR) under the null hypothesis. If we iterate this
process many times, say, M times, then we may consider having a sample of size M from a popula-
tion with mean, Eo(LR) but unknown distribution function, G, say, under the null hypothesis. From
this sample, one may construct an empirical distribution function, G, which can be considered an
estimator of G. Since G, is a consistent estimator of G from the Glivenko-Cantelli lemma (Chung,
2001), one can estimate consistently a quantile or critical value for any given probability or signifi-
cance level. We will call this process to obtain null distribution of an LR statistic, the Monte-Carlo
(MC) method.

In this research, we consider obtaining null distributions of the LR functions for testing the co-
variance matrices under the multivariate normal distribution and compare them with the limiting dis-
tributions. For this purpose, the rest of this paper will be organized in the following order. In the next
section, we review the LR tests with limiting distributions in some detail and propose the MC method
to obtain quantiles as critical values for the LR functions. Then we illustrate the usage of distributions
with numerical examples for the decision of structures of the covariance matrices and compare the
precision between the two methods by obtaining empirical powers through a simulation study in the
Section 3. In the Section 4, we discuss some interesting features related with the LR functions and
the MC method.

2. Likelihood ratio test for the covariance matrix

Let X1, ..., X, be a random sample of g-variate column vectors with size n, from a g-variate normal
distribution with mean vector, ¢ and covariance matrix, X. Then it is of our interest to test

H()ZZZZO,

with the condition that the mean vector u is unknown but ¥ is a pre-specified positive definite g X ¢
matrix. However we note that without loss of generality, we may assume that £y = [ since X%, 172
has [ as its covariance matrix under Hy : ¥ = X, where [ is the g X g identity matrix. Then it is
well-known that
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is the maximum likelihood estimator of X, where X is the sample mean vector of y, also known as the
maximum likelihood estimator of u and (-)” is the transpose of a vector or matrix. We also assume
that S, is positive definite for each n. In order to discuss the LR function, L(Z; X1, ..., X,,) for testing
Hy : £ =1, let Aj, be the j™ eigenvalue of S,, j = 1,...,q. Then the LR function for testing
Hy : £ = I against H, : £ # I can be expressed as, with the notation that |A| and TR(A) are the
determinant and trace of the matrix A, respectively,

sup {12, /(X;: . Z1Ho))
sup [Ty f(Xi 1, ZIHo U )

n n qn
Sy [——TR Sy +—]
1S, exp| -5 TR(S,) +
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f in L(Z; Xy, ...,X,) denotes the g-variate normal probability density function. Then the testing
rule would be to reject Hy : £ = [ in favor of H; : ¥ # [ for some small but positive values of
L(%; Xy,...,X,)inthe light of LR principle. Then in order to complete the multivariate test Hy : X = 1,
we need a null distribution of the LR function for any form listed above. However any exact null dis-
tribution of any form of LR statistics has not been reported and only an asymptotic result based on
the log likelihood arguments has been available. In the following, we state a limiting distribution for
Hy : X = I. The proof for this, you may refer to Silvey (1975) or Mardia et al. (1979).

Lemma 1. The distribution of
I=-2log L(Z; X1, ..., Xy,)
is a chi-square with q(q + 1)/2 degrees of freedom (df) asymptotically under Hy : X = I.

Then the testing rule based on / would be to reject Hy : £ = I for some large values of I. Thus one
may complete the test Hy : ¥ = I asymptotically by invoking a table for the chi-square distributions.
One may also take the MC approach for obtaining null distribution of / in the following order.

(I) Generate pseudo random normal vectors of size n from N, (0, ).
(II) Then compute the LR statistic of /.
(IIT) Iterate (I) and (II) M times and order M number of the LR statistics of /.
(IV) From the ordered statistics of /’s, obtain (or estimate) p”* quantile for any given probability p.
(V) Repeat K times from (I) to (IV), obtain K number of p™ quantiles and average them.

Then one can carry out the LR test by obtaining the critical values for any given significance levels or
p-values using the procedure from (I) to (V).
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Table 1: Quantiles (or critical values) for some selected probabilities (or significance levels) and sample sizes
for [ for N,(0, 1)

Quantile 53 10 i3 % 25 30
001 0.1148 0.1438 0.1328 0.1279 0.1251 0.1232
0.5 03518 0.4402 0.4067 03917 03829 03775
q0.10 0.5844 0.7310 0.6754 0.6505 0.6361 0.6270
9090 6.2514 7.7819 72094 6.9489 6.8005 6.6736
0.5 7.8147 9.7171 9.0078 8.6839 8.4984 8.3793
40.99 11.3449 14.0750 13.0628 12.5967 12,3305 12.1624

Table 2: Quantiles (or critical values) for some selected probabilities (or significance levels) and sample sizes
for [ for N3(0, I)

Quantile X(6) 10 15 50 75 30
2001 0.8721 11344 10315 0.9865 09611 0.9453
4005 1.6354 2.1273 1.9342 1.8503 1.8028 1.7728
q0.10 22041 2.8672 2.6068 2.4939 2.4295 23893
40.90 10.6446 13.8392 12,5819 12.0369 11.7311 11.5359
4095 125916 163709 14.8826 142378 13.8763 13.6454
099 16.8119 21.8668 19.8689 19.0038 18.5257 18.2169

In order to investigate the behavior of quantiles obtained from the MC method and compare them
with quantiles from the chi-square distributions which are the limiting distributions, we have obtained
quantiles (or critical values) of /, the log likelihood ratio statistic, for some selected sample sizes, 10,
15, 20, 25, and 30 and probabilities (or significance levels), 0.01, 0.05, 01, 0.9, 0.95, and 0.99 by
choosing M = 100,000 and K = 2,000 for N,(0, ) and N3(0, ). We tabulated the results in Tables
1 and 2 for N,(0,1) and N3(0, I), respectively. Also we included quantiles, X§(3) and X§(6) for the
chi-square distributions with 3 and 6 df s to compare them with quantiles obtained by the MC method.
We note that quantiles of / obtained from MC method approach to )(]27(3) and X%(é) as the sample sizes
increase. Therefore one may conclude that one should use quantiles obtained from the MC method
especially when sample sizes are small. The simulation study will confirm this observation later. We
also note that as ¢, the dimension, increases, the difference between quantiles from the MC method
and chi-square distributions tends to become wider. All computations have been conducted using the
SAS/IML PC-version.

Then we may finish the test for testing Hy : £ = I by obtaining a critical value for / using the MC
method for the given significance level.

It would be interesting to compare their performance and precision between the two LR tests.
This will be accomplished in the next section with a simulation study. In the tables of the next
section, MC implies the LR test based on the permutation principle and AS means the LR one applying
asymptotically the chi-square distribution. We begin the next section with some numerical examples.

3. Examples and a simulation study

We first illustrate the two tests, MC and AS with the head data of brothers (Frets, 1921) summarized in
Mardia et al. (1979) and the turtles data in Jolicoeur and Mosimann (1960). We note that the brothers
data set is bivariate and the sample size is 25. We also note that the turtles data set is tri-variate and
the sample size is 24. Therefore we have used the chi-square distributions with 3 and 6 dfs for the
AS tests. For the brothers data, one may use the null distribution of obtained from the MC method
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Table 3: p-values for Hy,

Test p-value

MC 0.2722

AS 0.2349
Table 4: p-values for Hy,

Test p-value

MC 0.0005

AS 0.0042

in Table 1 when n = 25. However we have applied the MC method again to obtain the p-values for
the comparison between the two LR tests for both cases. Mardia ef al. (1979) were interested in
investigating the structure of the covariance matrix X for the head length between the first and second
sons through a testing approach whether they are independent or not. However their conclusions were
implicit since they could not obtain exact p-values even though they are asymptotic. In this study,
also we consider investigating the structure of the covariance matrix X by using the two LR tests for
the following two hypotheses such as

Hoi O'% g2 _ 100 50
"\ oy o2 50 100

and
X a 2 J12 _ 100 0
H°2'( on o )‘( 0 100 )
We obtained the p-values for the MC and AS tests for the two null hypotheses, Hy; and Hp, and
tabulated them in Tables 3 and 4. The two test, MC and AS show similar patterns for the p-values for
each case. Therefore one may choose Hy; for the covariance matrix Z.

As another example, 24 turtles were collected and for each turtle, the carapace dimensions were
measured in three mutually perpendicular directions of space: length, maximum width, and height.
More detailed definitions and explanations of these measurements and contents, you may refer to
Jolicoeur and Mosimann (1960). Each specimen is therefore represented in this study by a set of three
measurements. Originally Jolicoeur and Mosimann (1960) were interested in the principal component

analysis among three variables. However in this study, we are interested in detecting the structures of
covariance matrix which are described as the two null hypotheses, Hys and Hg.

O'% J12 013 140 75 35
H03 : 021 0'% 023 = 75 50 20
031 032 0'_% 35 20 10
and
0’% Jg12 013 140 0 O
H04 . 021 O'% g23 = 0 50 0
031 032 0’% 0 0 10

We have obtained that 6.2096584 and 110.33072 as the values of /, respectively. The respective p-
values are summarized in Tables 5 and 6 with the two methods to obtain the p-values. The tables
show the strong evidence for Hy; for the covariance matrix.
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Table 5: p-values for Hy;

Test p-value
MC 0.4683
AS 0.4001

Table 6: p-values for Hy,

Test p-value
MC 0.0000
AS 0.0000

Table 7: Empirical powers by varying covariance only

(07,03,012)

Test " L0 (1,02 (L,,02) (1,05 (1,1,-05)  (1,1,08)  (I,1,-038)
5 0.0637 0.0751 0.0736 0.1324 0.1350 0.3304 0.3341
10 0.0503 0.0743 0.0711 0.2282 02168 0.7265 0.7283

Mo 15 00493 0.0813 0.0824 0.3452 0.3419 0.9419 0.9383
20 0.0500 0.0970 0.0906 0.4583 0.4556 0.9921 0.9924
25 0.0510 0.1152 0.1120 0.5944 0.5842 0.9999 0.9996
30 0.0490 0.1214 0.1229 0.6886 0.6810 1.0000 1.0000
5 0.1839 0.1969 0.2000 0.2973 02924 0.6144 0.6158
10 0.0994 0.1291 0.1276 0.3286 0.3201 0.8790 0.8821

AS 15 0.0806 0.1201 0.1209 0.4340 0.4287 0.9835 0.9823
20 0.0723 0.1286 0.1255 0.5384 0.5359 0.9983 0.9975
25 0.0673 0.1377 0.1356 0.6427 0.6282 0.9999 0.9999
30 0.0626 0.1457 0.1457 0.7299 0.7237 1.0000 1.0000

Now we compare performance and precision between the two LR tests, MC and AS by obtaining
empirical powers through a simulation study under several scenarios for the bivariate normal case. We
conducted a simulation study by generating bivariate normal pseudo-random vectors with a zero mean
vector and varying the values of components of the covariance matrix with six cases of the sample
sizes, 5, 10, 15, 20, 25, and 30 in order to inspect the behaviors of the two tests for the small sample
cases. In the tables, (1, 1,0) means that 0'% = o-% = 1 and 01, = 0, which is /. We have applied the
chi-square distribution with 3 df for the AS test since we deal with the bivariate case. In Table 7, we
only consider varying the values of o}, with o-% = 0'% = 1. In Table 8, we considered the case by
varying the value of o-% with 0'% = 1 and 0, = 0. Finally we consider the case that both variances
vary independently (oj, = 0) and dependently (o7, = 0.5) in Table 9. We chose 0.05 for the nominal
significance level for all cases with 10,000 iterations for each simulation. All the computations were
conducted with SAS/IML with PC-version.

We first note that from Table 7, the results are almost symmetric when the values of covariance
are assigned with the opposite signs. For this reason, we consider only positive values for covariance
in Tables 8 and 9. From Table 7, MC test achieves its nominal significance level well while AS one
always achieves higher values than the nominal significance level for all cases. The reason for this
may come from the fact that quantiles of the chi-square distribution with 3 df are lower than those from
the MC method for all sample sizes as observed in Table 1. However as the sample sizes increase,
empirical significance levels approach to the nominal one for the AS test. It is therefore recommended
to use quantiles obtained from the MC method for the small sample case. In Table 8, one may observe
that reversal phenomenon about empirical powers happened for the AS test. Even though the sample
size increases, the empirical power decreases for the AS test for some cases. In all the tables, as the
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Table 8: Empirical powers by varying only one variance with 0 covariance

7 2
Test n (01,05, 012)

(1,1.2,0) (1,0.8,0) (1,1.5,0) (1,0.5,0) (1,1.8,0) (1,0.2,0)
5 0.0766 0.0609 0.1104 0.0841 0.1537 0.2022
10 0.0700 0.0550 0.1306 0.1200 0.2148 0.5617
MC 15 0.0716 0.0573 0.1547 0.1879 0.2830 0.8632
20 0.0726 0.0617 0.1842 0.2598 0.3550 0.9722
25 0.0741 0.0629 0.1935 0.4602 0.3615 0.9990
30 0.0767 0.0711 0.2100 0.5412 0.4354 0.9998
5 0.1749 0.2111 0.1794 0.2955 0.2038 0.5930
10 0.0974 0.1298 0.1338 0.2812 0.2001 0.8439
AS 15 0.0869 0.1172 0.1480 0.3490 0.2603 0.9683
20 0.0805 0.1149 0.1730 0.4311 0.3300 0.9963
25 0.0843 0.1159 0.2028 0.5108 0.3965 0.9995
30 0.0844 0.1202 0.2406 0.5912 0.4708 1.0000

Table 9: Empirical powers by varying both variances and covariance

(03,05,012)

Test " (1.2,0.8,0) (1.2,0.8,0.5) (1.5,0.5,0) (1.5,0.5,0.5) (1.8,0.2,0) (1.8,0.2,0.5)
5 0.0734 0.1443 0.1343 0.2416 0.3315 0.7114
10 0.0739 0.2647 0.2256 0.5155 0.7313 0.9990

MC 15 0.0830 0.4046 0.3414 0.7595 0.9421 1.0000
20 0.0994 0.5433 0.4616 0.9021 0.9906 1.0000
25 0.1137 0.6919 0.5996 0.9777 0.9994 1.0000
30 0.1249 0.7814 0.6880 0.9935 1.0000 1.0000
5 0.1996 0.3171 0.2957 0.4701 0.6155 0.9713
10 0.1266 0.3780 0.3264 0.6765 0.8812 1.0000

AS 15 0.1208 0.5023 0.4310 0.8597 0.9809 1.0000
20 0.1282 0.6213 0.5397 0.9501 0.9973 1.0000
25 0.1363 0.7308 0.6427 0.9840 0.9997 1.0000
30 0.1496 0.8153 0.7254 0.9958 1.0000 1.0000

difference between two variances increases and/or covariance approaches to 1, the empirical powers
increases. Finally we note that the empirical powers of MC are all lower than those of AS as we have
expected since the quantiles of / approaches to )(305 (3) from above.

4. Concluding remarks

In (2.1), we have expressed the LR function with a multiplication of ¢ number of LR functions with
individual eigenvalues of the sample covariance matrix S, and noted that (2.1) is a multiplication
of Aj,’s which are independent and distributed as chi-square with n — 1 df. Using this expression,
we have tried to obtain a reasonable test procedure for the covariance matrices based on Aj,’s but
simply failed. The failure of obtaining any test procedure with Aj,’s may be because the relation
between a matrix and its corresponding eigenvalues may not be fully investigated in the sense that
which eigenvalue corresponds to which component of the matrix. Therefore it would be salient to
have a precise or reasonable relation between a matrix and its eigenvalues.

In Tables 1 and 2, we have already noticed that as the sample sizes increase, quantiles obtained
from the MC method approach to the limiting quantiles of the chi-square distribution. This phe-
nomenon is a standard that confirms the large sample approximation theory in general. Therefore we
may recommend to apply the MC method, when sample sizes are small. Or even for any reasonable
sample sizes, the computation time to obtain a distribution with the MC method would be negligible.
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The MC method can be applied other than the LR statistics for the test of covariance matrix if
the null hypothesis is non-ambiguous and well-defined. For example, Park (2017) has used the MC
method to obtain a null distribution of LR statistics for the multivariate simultaneous test. However it
would be difficult to apply the MC method for a nonparametric test since the distribution of population
for the null hypothesis is too broad to choose a specific one. One may also note that Kim and Cheon
(2013) applied the MC method to estimate the posterior distribution in the Bayesian analysis.

Finally we note that the quantiles from the chi-square distribution in Table 1 are higher than those
obtained the MC method for all cases. This is why the empirical powers of AS test in Table 7 to 9 are
higher than those of the MC one for all cases. One may also be suspicious that the empirical powers
of MC test are not exactly 0.0500 under Hy : £ = I in spite of using the same MC method to obtain
quantiles of /. The reason for this is that we have used different seed numbers to generate pseudo
random vectors for each case.
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