DOI QR코드

DOI QR Code

Use of Lèvy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data

  • Achcar, Jorge A. (Departamento de Medicina Social, Universidade de Sao Paulo) ;
  • Coelho-Barros, Emilio A. (Departamento de Matematica, Universidade Federal do Parana) ;
  • Cuevas, Jose Rafael Tovar (Escuela de Estadistica, Universidad del Valle) ;
  • Mazucheli, Josmar (Departamento de Estatistica, Universidade Estadual de Maringa)
  • Received : 2017.07.06
  • Accepted : 2017.12.12
  • Published : 2018.01.31

Abstract

This paper considers the use of classical and Bayesian inference methods to analyze data generated by variables whose natural behavior can be modeled using asymmetric distributions in the presence of left censoring. Our approach used a $L{\grave{e}}vy$ distribution in the presence of left censored data and covariates. This distribution could be a good alternative to model data with asymmetric behavior in many applications as lifetime data for instance, especially in engineering applications and health research, when some observations are large in comparison to other ones and standard distributions commonly used to model asymmetry data like the exponential, Weibull or log-logistic are not appropriate to be fitted by the data. Inferences for the parameters of the proposed model under a classical inference approach are obtained using a maximum likelihood estimators (MLEs) approach and usual asymptotical normality for MLEs based on the Fisher information measure. Under a Bayesian approach, the posterior summaries of interest are obtained using standard Markov chain Monte Carlo simulation methods and available software like SAS. A numerical illustration is presented considering data of thyroglobulin levels present in a group of individuals with differentiated cancer of thyroid.

Keywords

References

  1. Abramowitz M and Stegun IA (1992). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, Reprint of the 1972 edition.
  2. Achcar JA, Lopes SRC, Mazucheli J, and Linhares RR (2013). A Bayesian approach for stable distributions: some computational aspects, Open Journal of Statistics, 3, 268-277. https://doi.org/10.4236/ojs.2013.34031
  3. Aryal G and Elbatal I (2015). On the exponentiated generalized modified Weibull distribution, Communications for Statistical Applications and Methods, 22, 333-348. https://doi.org/10.5351/CSAM.2015.22.4.333
  4. Barkai E, Silbey R, and Zumofen G (2000). Levy distribution of single molecule line shape cumulants in glasses, Physical Review Letters, 84, 5339-5342. https://doi.org/10.1103/PhysRevLett.84.5339
  5. Berg A, Meyer R, and Yu J (2004). Deviance information criterion for comparing stochastic volatility models, Journal of Business and Economic Statistics, 22, 107-120. https://doi.org/10.1198/073500103288619430
  6. Brooks SP and Gelman A (1998). General methods for monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, 7, 434-455.
  7. Buckle DJ (1995). Bayesian inference for stable distributions, Journal of the American Statistical Association, 90, 605-613. https://doi.org/10.1080/01621459.1995.10476553
  8. Casella G and George EI (1992). Explaining the Gibbs sampler, The American Statistician, 46, 167-174.
  9. Chib S and Greenberg E (1995). Understanding the Metropolis-Hastings algorithm, The American Statistician, 49, 327-335.
  10. Damien P, Wakefield J, and Walker S (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 331-344. https://doi.org/10.1111/1467-9868.00179
  11. Feller W (1971). An Introduction to Probability Theory and Its Applications. Vol. II (2nd ed), John Wiley & Sons, New York.
  12. Gelfand AE, Dey DK, and Chang H (1992). Model determination using predictive distributions with implementation via sampling-based methods. In Bayesian Statistics, (pp. 147-167), Oxford University Press, New York.
  13. Gnedenko BV and Kolmogorov AN (1968). Limit Distributions for Sums of Independent Random Variables (Revised ed), Addison-Wesley, Reading Mass.
  14. Ibragimov IA and Chernin KE (1959). On the unimodality of geometric stable laws, Teoriya Veroyatnostei i ee Primeneniya, 4, 453-456.
  15. Kanter M (1976). On the unimodality of stable densities, The Annals of Probability, 4, 1006-1008. https://doi.org/10.1214/aop/1176995944
  16. Khan MS and King R (2016). New generalized inverse Weibull distribution for lifetime modeling. Communications for Statistical Applications and Methods 23, 147-161. https://doi.org/10.5351/CSAM.2016.23.2.147
  17. Khan MS, King R, and Hudson IL (2016). Transmuted new generalized Weibull distribution for lifetime modeling, Communications for Statistical Applications and Methods 23, 363-383. https://doi.org/10.5351/CSAM.2016.23.5.363
  18. Kim N (2016). On the maximum likelihood estimators for parameters of a Weibull distribution under random censoring, Communications for Statistical Applications and Methods, 23, 241-250. https://doi.org/10.5351/CSAM.2016.23.3.241
  19. Kim N (2017). Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters, Communications for Statistical Applications and Methods, 24, 519-531. https://doi.org/10.5351/CSAM.2017.24.5.519
  20. Kleiber C and Kotz S (2003). Pareto distributions. In Statistical Size Distributions in Economics and Actuarial Sciences, (pp. 59-106), John Wiley & Sons, New York.
  21. Levy P (1924). Theorie des erreurs. La loi de gauss et les lois exceptionelles, Bulletin de la Societe Mathematique de France, 52, 49-85.
  22. Lopez M, Cuevas JRT, and Gutierrez CT (2014). Niveles de tiroglobulina previo a la ablacion y persistencia / recurrencia precoz del cancer diferenciado de tiroides, Revista Ciencias de la Salud, 12, 9-21.
  23. Lukacs E (1970). Characteristic Functions (2nd ed), Hafner Publishing, New York.
  24. Nolan JP (2015). Stable Distributions - Models for Heavy Tailed Data, Birkhauser, Boston.
  25. R Core Team (2014). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
  26. Ranjani JJ and Chithra MS (2015). Bayesian denoising of ultrasound images using heavy-tailed Levy distribution, IET Image Processing, 9, 338-345. https://doi.org/10.1049/iet-ipr.2013.0863
  27. SAS Institute Inc (2010a). The MCMC Procedure, SAS/STAT 9.22 User's Guide, Cary, AS Institute Inc, NC.
  28. SAS Institute Inc (2010b). The NLMIXED Procedure, SAS/STAT 9.22 User's Guide, Cary, AS Institute Inc, NC.
  29. Skorohod AV (1961). On a theorem concerning stable distributions. In Selected Translations in Mathematical Statistics and Probability, Institute of Mathematical Statistics and American Mathematical Society, Providence, 1, 169-170.
  30. Spiegelhalter DJ, Best NG, Carlin BP, and van der Linde A (2002). A Bayesian measure of model complexity and fit (with discussion), Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 583-639. https://doi.org/10.1111/1467-9868.00353
  31. Su Y and Yajima M (2015). R2jags: A Package for Running jags from R, R package version 0.05-01.
  32. Tanner MA and Wong HW (1987). The calculation of posterior distributions by data augmentation, Journal of the American Statistical Association, 82, 528-550. https://doi.org/10.1080/01621459.1987.10478458
  33. Tsallis C, Levy S, Souza A, and Maynard R (1995). Statistical-mechanical foundation of the ubiquity of Levy distributions in Nature, Physical Review Letters, 75, 3589-3593. https://doi.org/10.1103/PhysRevLett.75.3589
  34. Yu ZG, Anh V, Wang Y, Mao D, and Wanliss J. (2010). Modeling and simulation of the horizontal component of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition, Journal of Geophysical Research: Space Physics, 115, A10219.