Effect of neck design on peri-implant tissue responses in external connection type implant : a prospective pilot clinical study

외측연결형 임플란트 고정체의 경부 디자인이 임플란트 주위조직에 미치는 영향에 대한 전향적 예비 임상연구

  • Bae, Eun-Bin (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Lee, So-Hyoun (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Kang, Eun-Sook (Department of Prosthodontics, In-Je University Haeundae Paik Hospital) ;
  • Park, Sang-Rye (Department of Dental Hygiene, Kyungnam College of Information & Technology) ;
  • Lee, Jin-Ju (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 배은빈 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 이소현 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 전영찬 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 강은숙 (인제대학교 해운대 백병원 치과보철과) ;
  • 박상례 (경남정보대학교 치위생과) ;
  • 이진주 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 허중보 (부산대학교 치의학전문대학원 치과보철학교실)
  • Received : 2017.04.26
  • Accepted : 2017.09.14
  • Published : 2017.11.01

Abstract

This clinical study was conducted to evaluate the clinical effects of a concave neck of external connection type implant fixture designed for platform switching on the peri-implant tissue responses. Two types of implants with different neck designs were implanted in 20 patients. For the experimental group, the bioseal(BS) implant fixtures with 's' shaped concave profile on the neck were used, and non-bioseal(NBS) implant fixtures with a straight profile on the neck were used as control(Total of 40 implants, NBS: n = 19, BS: n=21). During the one-year period after implant placement, implant survival rate, marginal bone resorption, bleeding, plaque, and complications were evaluated. The survival rate of NBS and BS group was 94.74% and 90.48%, respectively. There was no significant difference on marginal bone resorption, bleeding and plaque between the two groups (P>.05). Within the limits of the present study, implants with a concave neck design showed similar clinical results to implants with a straight neck design on the peri-implant tissue responses. Longitudinal clinical studies are necessary to confirm more effective clinical results.

Keywords

Acknowledgement

Supported by : Pusan National University

References

  1. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10(6):387-416. https://doi.org/10.1016/S0300-9785(81)80077-4
  2. Meffert RM. The soft tissue interface in dental implantology. Int J Oral Implantol 1988;5(12):55-58.
  3. Albrektsson T. A multicenter report on osseointegrated oral implants. J Prostet Dent 1988;60(1):75-84. https://doi.org/10.1016/0022-3913(88)90355-1
  4. Abu-Hammad O, Khraisat A, Dar-Odeh N, El-Maaytah M. Effect of dental implant cross-sectional design on cortical bone structure using finite element analysis. Clin Implant Dent Relat Res 2007;9(4):217-221. https://doi.org/10.1111/j.1708-8208.2007.00048.x
  5. Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002;73(3):322-333. https://doi.org/10.1902/jop.2002.73.3.322
  6. Quaresma SE, Cury PR, Sendyk WR, Sendyk C. A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone. J Oral Implantol 2008;34(1):1-6. https://doi.org/10.1563/1548-1336(2008)34[1:AFEAOT]2.0.CO;2
  7. Berglundh T, Lindhe J. Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol 1996;23(10):971-973. https://doi.org/10.1111/j.1600-051X.1996.tb00520.x
  8. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implantogingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol 1997;68(2):186-198. https://doi.org/10.1902/jop.1997.68.2.186
  9. Hermann JS, Buser D, Schenk RK, Higginbottom FL, Cochran DL. Biologic width around titanium implants A physiologically formed and stable dimension over time. Clin Oral Implants Res 2000;11(1):1-11. https://doi.org/10.1034/j.1600-0501.2000.011001001.x
  10. Berglundh T, Abrahammson I, Welander M, Lang NP, Lindhe J. Morphogenesis of the peri-implant mucosa: an experimental study in dogs. Clin Oral Implants Res 2007;18(1):1-8. https://doi.org/10.1111/j.1600-0501.2006.01380.x
  11. Glauser R, Schupbach P, Gottlow J, Hammerle CH. Periimplant soft tissue barrier at experimental onepiece mini-implants with different surface topography in humans: a light-microscopic overview and histometric analysis. Clin Implant Dent Relat Res 2005;7(1):44-51. https://doi.org/10.1111/j.1708-8208.2005.tb00074.x
  12. Groessner-Schriber B. Focal adhesion contact formation by fibroblasts cultured on surfacemodified dental implants: an in vitro study. Clin Oral Implants Res 2006;17(6):726-745.
  13. Abrahamsson I, Berglundh T, Lindhe J. The mucosal barrier following abutment dis/reconnection. An experimental study in the dog. J Clin Periodontol 1997;24(8):568-572. https://doi.org/10.1111/j.1600-051X.1997.tb00230.x
  14. Hermann F, Lerner H, Palti A. Factors influencing the preservation of the periimplant marginal bone. Implant dent 2007;16(2):165-175. https://doi.org/10.1097/ID.0b013e318065aa81
  15. Bae EK, Chung MK, Cha IH, Han DH. Marginal tissue response to different implant neck design. J Korean Acad Prosthodont 2008;46(6):602-609. https://doi.org/10.4047/jkap.2008.46.6.602
  16. Kim S, Oh KC, Han DH, Heo SJ, Ryu IC, Kwon JH, Han CH. Influence of transmucosal designs of three one-piece implant systems on early tissue responses: a histometric study in beagle dogs. Int J Oral Maxillofac Implants 2010;25(2):309-314.
  17. Gardner DM. Platform switching as a means to achieving implant esthetics. A case study. NY state Dent J 2005;71(3):34-37.
  18. Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent 2006;26(1):9-17.
  19. Baumgarten H, Cocchetto R, Testori T, Meltzer A, Porter S. A new implant design for crestal bone preservation: initial observations and case report. Pract Proced Aesthet Dent 2005;17(10):735-740.
  20. Baffone GM, Botticelli D, Pantani F, Cardoso LC, Schweikert MT, Lang NP. Influence of various implant platform configurations on peri-implant tissue dimensions: an experimental study in dog. Clin Oral Implants Res 2011;22(4):438-444. https://doi.org/10.1111/j.1600-0501.2010.02146.x
  21. Yoo HS, Kang SN, Jeong CM, Yun MJ, Huh JB, Jeon YC. Effects of implant collar design on marginal bone and soft tissue. Korean Acad Prosthodont 2012;50(1):21-28. https://doi.org/10.4047/jkap.2012.50.1.21
  22. Kim WH, Heo YK, Jeong CM., Cho DW, Ryu JJ, Huh JB. Influence of transmucosal designs of dental implant on tissue regeneration in beagle dogs. TERM 2013;10(1):25-32.
  23. Huh JB, Rheu GB, Kim YS, Jeong CM, Lee JY, Shin SW. Influence of Implant transmucosal design on early peri?implant tissue responses in beagle dogs. Clin Oral Implants Res 2014;25(8):962-968. https://doi.org/10.1111/clr.12179
  24. Pearson ES and Hartley HO. Biometrika Tables for Statisticians Vol I. 3rd edition. Cambridge: Cambridge U. Press, 1970.
  25. Cochran DL, Buser D, ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, Peters F, Simpson JP. The use of reduced healing times on $ITI^{(R)}$ implants with a sandblasted and acid?etched (SLA) surface. Clin Oral Implants Res, 2002;13(2):144-153. https://doi.org/10.1034/j.1600-0501.2002.130204.x
  26. Mombelli A, van Osten MA, Schurch Jr E, Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 1987;2(4):145-151. https://doi.org/10.1111/j.1399-302X.1987.tb00298.x
  27. Joly C, de Lima AFM, da Silva RC. Clinical and radiographic evaluation of soft and hard tissue changes around implants: a pilot study. J Periodontol 2003;74(8):1097-1103. https://doi.org/10.1902/jop.2003.74.8.1097
  28. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, Van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri implant mucositis. Clin Oral Implants Res 1996;7(3):201-211. https://doi.org/10.1034/j.1600-0501.1996.070302.x
  29. Vela-Nebot X, Rodriguez-Ciurana X, Rodado-Alonso C, Segala-Torres M. Benefits of an implant platform modification technique to reduce crestal bone resorption. Implant dent 2006;15(3):313-320 https://doi.org/10.1097/01.id.0000226788.19742.32
  30. De Bruyn H, Collaert B. The effect of smoking on early implant failure. Clin Oral Implants Res 1994;5(4):260-264. https://doi.org/10.1034/j.1600-0501.1994.050410.x
  31. Misch CE. Contemporary implant dentistry. Mosby. 1982.
  32. Smith D, Zarb G. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent 1989;62(5):567- 575. https://doi.org/10.1016/0022-3913(89)90081-4
  33. Hermann JS, Cochran D.L, Nummikoski PV, Buser D. Crestal bone changes around titanium implants. A radiographic evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. J Periodontol 1997;68(11):1117-1130. https://doi.org/10.1902/jop.1997.68.11.1117
  34. Weber HP, Buser D, Donath K. Comparison of healed tissues adjacent to submerged and nonsubmerged unloaded titanium dental implants. A histometric study in beagle dogs. Clin Oral Implants Res 1996;7(1):11-19. https://doi.org/10.1034/j.1600-0501.1996.070102.x