
ETRI Journal, Volume 39, Number 1, February 2017 © 2017  Mohammad Mahdi Share Pasand and Mohsen Montazeri   13 
https://doi.org/10.4218/etrij.17.0116.0566 

A method is proposed for scheduling sensor accesses to 
the shared network in a networked control system. The 
proposed method determines the access order in which the 
sensors are granted medium access through minimization 
of the state estimation error covariance. Solving the 
problem by evaluating the error covariance for each 
possible ordered set of sensors is not practical for large 
systems. Therefore, a convex optimization problem is 
proposed, which yields approximate yet acceptable results. 
A state estimator is designed for the augmented system 
resulting from the incorporation of the optimally chosen 
communication sequence in the plant dynamics. A car 
suspension system simulation is conducted to test the 
proposed method. The results show promising 
improvement in the state estimation performance by 
reducing the estimation error norm compared to round-
robin scheduling. 
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I. Introduction 

Data communication networks have become integral parts of 
our lives and industrial systems [1]–[5]. The use of a shared 
network in a data processing system has numerous advantages 
over peer-to-peer communications. These advantages include 
reduced wiring costs, increased flexibility and maintainability, 
and easier extension of networks for additional nodes. When 
the communication medium is bandwidth-limited, it is not 
possible to instantly transmit the whole data set. As a result, 
data are scheduled and transmitted in a serial manner. 

The scheduled data have an inherent delay because each 
node must wait until it is allowed to access the shared 
communication medium and send its data over the network. 
This causes different time-varying delays in the transmitted 
data; moreover, different signals are transmitted with different 
delays. When the gathered data are processed for estimating, 
monitoring, soft sensing, controlling, or fault detecting, the 
delays in gathered data caused by bandwidth limitations should 
be considered.  

Owing to their inherent real-time characteristics, feedback 
control systems are vulnerable to network-induced delays. 
Therefore, communication-constrained networked control 
systems have received considerable attention. Reference [1] 
provides a brief yet inclusive survey on the topic. Most 
previous works focused on stochastic networks (for example, 
communication-constrained networked control systems of 
TCP/IP and similar networks). Nonetheless, only a few studies 
on real-time industrial networks, which are known as 
contention-free networks [6], have been conducted. The 
networked system, including both plant and network dynamics, 
may be viewed as a mixed logical dynamical system [3], a 
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time-varying linear system [6], [7], or a delayed system [7]. 
The problem of designing a controller with a focus on 
communication constraints was introduced in [3], [6] and [7]. 
Meanwhile, [6]–[8] examined state estimation and control. 

Previously reported results on optimal scheduling include 
numerical optimization approaches for offline optimal selection 
of periodic communication sequences through genetic 
algorithms and particle swarm optimization [6], heuristic 
approaches based on tree pruning [7], and a predictive online 
scheduling scheme [3]. The latter scheme solves an online 
optimization problem through a branch and bound method, or 
the so-called optimal pointer placement, which is a semi-online 
simplified version of the problem [3].  

Static approaches are also used to solve this problem. For 
instance, [6] and [7] introduced conditions to guarantee 
controllability and observability of a plant after being 
augmented with a fixed periodic actuator communication 
sequence. After selecting the sequence, a time-varying periodic 
linear–quadratic–Gaussian controller is designed by solving a 
periodic Ricatti equation for the selected scheduling.  

References [3], [6], and [7], along with similar works, 
considered actuator communication constraints in which output 
or state information is readily available at the controller. 
Reference [6], Chapter 7, uses a genetic algorithm and particle 
swarm optimization to select optimal scheduling for a fixed 
observer/controller gain. It evaluates the estimation error 
covariance by simulating the plant for each possible scheduling. 
As mentioned therein, selection of the optimal sequence 
depends on the initial conditions. Therefore, this method 
cannot be used for offline determination of the optimal 
sequence. In addition, the aforementioned method is not 
suitable for online implementation on account of significant 
computational complexity.  

In this paper, a method is proposed for selecting an 
appropriate sensor communication sequence for minimizing 
the state estimation error covariance using a convex 
optimization approach. The proposed approach is different 
from those of previous works in that it simplifies the problem 
of finding the best sensor communication sequence through an 
approximation. While previous works minimize the sum of 
squared errors, the proposed method minimizes the squared 
error itself at each time instant. Therefore, the problem is 
reduced to a convex programming problem. The proposed 
method is implemented in a semi-online manner (that is, every 
N time ticks).  

The remainder of this paper is organized as follows. In 
Section II, preliminary notions are given. The proposed 
method is described in Section III. Simulation results are 
provided in Section IV, and conclusions are presented in 
Section V. 

II. Preliminaries 

Equations (1) and (2) describe networked system dynamics 
in which the sensor bandwidth is  limited.  
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Here, ( )y k  is the transmitted value of output when the Zero 

Order Hold (ZOH) is used, y(k) is the actual output, and ( )y k  

is the output when the Reset To Zero (RTZ) policy, as assumed 

in [7], is used. In addition, ( )y k  contains those elements 

from y(k) to which medium access is granted with other 

elements replaced by their most recent (previous) values.  

To establish a relationship between ( )y k  and y(k), the 

notions of scheduling matrix Ss(k) and communication 

sequence ps are used. Note that RTZ output can be 

immediately derived from ZOH output. 
Owing to a bandwidth limitation, only bS nodes can access 

the medium simultaneously; that is, 
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( , )( )
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i j i k
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A p-periodic sensor (output) communication sequence, ps   

{ (0), , ( 1)},S SS S p   as defined in [7], represents the order 

of accesses granted to the sensors. It is a binary-valued function 

denoting the medium access status of the ith output at time ticks 

0 … p – 1, and it is subsequently repeated. A one in the ith 

diagonal element of Ss(k) means “accessing,” while a zero 

means “not-accessing.” 
Definition. A p-periodic communication sequence is deemed 
admissible if all sensors are read at least once during each 
period.  

At each time tick k, the observer estimates the system state 
vector based only on data from bS sensors, which were granted 
medium access. Equations (1) to (4) describe the networked 
control system (NCS) from the observer perspective. This 
model incorporates dynamics of the plant with the access status 
of the communication medium. The incorporated plant is a 
time-varying linear system whose parameters are functions of 
the communication sequence.  

In this setting, a communication sequence must be selected 
that will control traffic on the shared medium and the observer 
(gain) in order to reconstruct the state vector through available 
measurements. The communication sequence determines the 
time-varying dynamics of the resulting incorporated plant; thus, 
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the optimal estimator (including the observer dynamics and 
chosen communication sequence) depends on the 
communication sequence.  

Consequently, a joint problem—specifically, optimization 
with respect to both estimation and communication—should 
be solved. This is a generally difficult problem and usually 
involves combinatorial complexity [6]. Therefore, to enable the 
problem to be implementable online, the two problems are 
separated as follows. First, an optimal communication 
sequence is derived from among a family of candidate 
sequences. In this stage, the current estimation error and the 
system dynamics are given. Secondly, the optimal state 
estimation is computed through an optimal observer. A crucial 
requirement for the communication sequence is that the 
incorporated NCS remains observable/detectable after it is 
incorporated in the plant dynamics. This is addressed in the 
following lemma.  
Lemma 1. If pair (A, C) is observable/detectable and ps is 
admissible, then the networked system of (1) and (2) is 
observable/detectable [6]. 

Selecting an appropriate communication sequence among all 
possible ones by evaluating the associated costs is a tedious and 
time-consuming procedure. An “appropriateness measure” is 
thus required to compare two or more communication sequences.  

Here, the estimation error covariance is assumed to be the 

measure for optimizing communication sequences. The best 

communication sequence is the one that results in the smallest 

confidence ellipsoid, which is the minimum volume ellipsoid 

that contains an estimation error with a certain probability (that 

is, 1{ | }).Tz z z    In this case, the probability of the 

estimation error to be contained in the ellipsoid is described by 

an X-squared cumulative distribution function.  
Accordingly, a set of potential measurements characterized 

by (5) is considered. It is desirable to choose a subset of 
measurements (sensors) that minimizes the volume (or mean 
radius) of the resulting confidence ellipsoid. The following 
lemma is recalled from [9] and [10] for this purpose.  
Lemma 2. Given m measurements: 

2
1

1, , ,

~ (0, ), { , , }.

T
i i i

i i q

z a X w i m

w N a V v v

   

  
       (5) 

The maximum likelihood (MLE) and maximum a posteriori 
(MAP) estimates of X are given by:  
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Furthermore, if δi = {0, 1} represents a selection of a specific 
measurement, zi, from the total number of possible candidate 
measurements, the problem of choosing m  measurements 
out of m possibilities—specifically for yielding a minimum 
variance estimation based on MAP—can be formulated as:  
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By relaxing the non-convex constraints {0,1}i   with the 
convex constraints [0 1],i   the convex relaxation of (8) is 
obtained. The resulting optimization problem, unlike the 
original sensor selection problem, is a convex optimization 
problem because the objective function is convex in i  and 
the equality and inequality constraints are linear (in )i . This 
problem can be efficiently solved, such as by using interior 
point methods (see, [9] and [10] and their references). 

These methods are known to typically require a few tens of 
iterations each with a complexity of O(m3) [10]. The relaxed 
problem is not equivalent to the original sensor selection 
problem; nevertheless, the optimal objective value of the 
relaxed problem is a lower bound for the original sensor 
selection problem. This is because its feasible set contains the 
feasible set of the original problem.  

Note that, in contrast to the sensor selection problem [10], 
[11], which selects a number of sensors and discards the    
rest, sensor scheduling involves determining the order and 
frequency of sensors to be granted medium access; that is, none 
of the sensors is discarded. 

The presented problem differs from that of [12] and similar 
works, wherein the intermittent connection is stochastically 
described and cannot be considered a design parameter. In this 
paper, a deterministic periodic pattern of network access is 
presented that is optimized to yield the best estimation.  

Moreover, this work differs from [11] and [13] because they 
assume a distributed computation model, in which all or some 
sensors/processors can determine whether to transmit data 
(which is suited to contention-based networks). In this paper, 
on the other hand, it is assumed that network access is 
determined in a centralized manner, such as in field bus 
networks. 

III. Sensor Scheduling 

1. Problem Formulation 

Consider a linear time-invariant (LTI) system for state 
measurement through a scheduled network (matrix A is 
assumed to be invertible). 
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( 1) ( ) ( ) ( ) ( ).Sx k Ax k y k S k Cx k            (9) 

The problem of optimal scheduling of sensors in an LTI system 
described by (9) can be stated as a convex optimization 
problem of the following form:  
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Possible measurements and the set of values for ai are:  
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Here, ψ is the set of all possible sensor scheduling matrices. For 
a bandwidth of bs, the number of possible matrices is 

y

s

n

b

 
 
 

. In cases where logical constraints on the selected set of 

sensors exist—for instance, when fewer than bs sensors are to 
be simultaneously read—the number of possible scheduling 
matrices decreases.  
Remark 1. Equations (10) and (11) are a convex optimization 
problem because the objective function is convex and all 
constraints could be stated as linear equalities/inequalities.  

Adding a slack variable, (10) can be further manipulated to 
result in a semi-definite convex programs: 
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It is important to dedicate a specific portion of available 
accesses to each sensor. Therefore, a constraint may be added 
to (11) or (14) as:  

1

,
m

ij j
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where mj represents a portion of m dedicated to the jth sensor.  
Remark 2. The proposed formulation can be modified to 
cover a time-varying state matrix as follows:  
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2. Design Procedure 

Using the information of the previous sections, an appropriate 
schedule can be derived using the following procedure: 
Step 1. Solve the optimization problem to find a sequence.  
Step 2. Derive a time-varying (periodic) system by including 
the sequence computed in Step 1 in the plant dynamics.  
Step 3. Design a Kalman filter for the system derived in Step 2.  
Step 4. Apply the filter for a sufficiently large number of time 
ticks (a multiplication of m) until the next optimization round.  

The discrete time Kalman filter is the optimal estimator for 
the time-varying plant resulting from incorporation of network 
dynamics in the original plant dynamics. It is described in  
two recursive steps. Below, the analytical expressions for the 
Kalman filter are reviewed and the online estimation dynamics 
are provided.  
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where L(k) is the Kalman gain, and ˆ( | )x t k  and ( | )P t k , 

respectively, denote the state estimation and covariance matrix 

of the estimation error at time tick t when the estimation is 

performed using measurements obtained at time tick k. As  

the communication sequence is assumed to be periodic, the 

aforementioned equations become periodic. Discrete time 

periodic Ricatti equations are discussed in many works [14]. 

Most relevant results are reviewed below.  

Theorem 1. There exists a unique symmetric p-periodic 

positive semi-definite solution, Pp(k), for the discrete time 

periodic Ricatti difference equation, (24). Accordingly, the 

associated closed loop system with Kalman gain of (26), 

( ) ( ) ( ),p p pA k L k C k  is asymptotically stable if and only if p-

periodic pair (Ap, Cp) is detectable.  
Furthermore, every positive symmetric semi-definite 

solution to (24) converges to the unique periodic positive semi-
definite solution, Pp(k) ([14], pp. 5–7), where m represents the 
optimization horizon. The lower limit of m is determined by 
the admissibility constraint. Tmax is the maximum allowable 
time between two consecutive readings of a sensor, and Tcycle  
is the minimum time between two consecutive readings on a 
network.  

max

cycle

.y

S

n T
m

b T
                  (27) 

On account of relaxation in (14) many ij  may be close to 

each other; thus, there is no preference from among several 

sensors. Therefore, sensors are read based on a round-robin 

schedule until the optimization results in ij  with significant 

certainty to grant access to the chosen sensor(s).  
Note that, if the trace of the left side of (23) is assumed to be 

the cost function, as in [6], then the optimization problem 
should be solved using numerical search methods, such as 
those examined in [3] and [6].  

Remark 3. The optimization problem of (10) can be solved 

using software tools, such as the CVX [15], thereby resulting in 

lower computational complexity compared to optimization 

approaches in sensor scheduling ([6], Chapter 7) or actuator 

scheduling ([3], [6], [7]). For MLE estimation, because the 

current error covariance is not required for optimization, it is 

sufficient for the computation time to be smaller than the time 

required for m communications; that is, 

computation cycle .T mT              (28) 

 

Fig. 1. States: actual x(t), round robin xr(t), and proposed method 
xp(t). 
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Fig. 2. Squarederror: round-robin approach and proposed method.
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IV. Simulation  

Example 1. This example compares the proposed method with 
a round-robin approach when state information is available as 
measurements. This can be viewed as a sampling time 
assignment with time-varying sampling intervals.  

 
 
diag 0.9,0.6,0.75 , , 12, 1,

diag(1,0,0),diag(0,1,0),diag(0,0,1) ,

 (0) ~ (0,1), ( ) 0.2, 20 25, ( ) ~ (0,0.2).

A C I m m b

x N d t t v t N



    



  

 

Figure 1 illustrates the actual value of a state variable, its 
value when a round-robin schedule is applied for network 
access arbitration, and the value when the proposed schedule is 
applied for arbitration of network access. Figure 2 depicts the 
squared estimation error (specifically, the difference between 
the actual value and its estimated value) for the cases of the 
round-robin approach and the proposed scheduling. It is shown 
that the proposed scheduling method results in a significantly 
smaller estimation error. 

Figure 3 illustrates the role of prediction horizon m on the 
estimation error of the state variable. It is evident that, for 
smaller values (that is, ym n ), the proposed method results 
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Fig. 3. Squared estimation error with respect to m. 

0 5 10 15 20 25 30
0

2

4

6

8

10

12

m

Proposed method
Round robin 

 

 

Fig. 4. Approximate timing requirements with respect to m. 
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Fig. 5. Quarter car model. 
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in significantly smaller estimation errors.  

However, it is apparent that those values for m require more 
computational overhead, as implied by Fig. 4. By increasing 
the prediction horizon, the proposed scheduling method results 
in an estimation error that is almost equal to that of a round 
robin. Therefore, as long as the admissibility constraint and 
computational feasibility are not violated, m can be reduced to 
search for better performance. 

For m < 20, the proposed method yields a smaller estimation 

 

Fig. 6. Actual x(t), round robin xr(t), and proposed method xp(t).
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error compared to the round-robin approach. For a larger m, the 
estimation error and computation time increase. On the other 
hand, the time slot available for performing the computations 
increases. Therefore, m can be chosen as an intermediate value, 
resulting in small estimation error and feasible timing.  

Figure 6 shows the timing requirements with a network 
cycle time of 0.1s. The CVX toolbox reports the time of each 
optimization round. For this example, any 7 < m < 18 fulfills 
(28), and m = 5 yields the minimum estimation error (Fig. 5). 
However, it does not fulfill the timing requirements of (28)  
(Fig. 6). Proper choices are m = 12, 15.  
Example 2. This example simulates a model for the active–
passive car suspension system studied in [3], which assumes 
communication limitations in the actuator side. Moreover, it 
presumes the system state is readily available to the controller. 
In this section, only state estimation is considered. Following 
the state estimation, one may design a controller according   
to several methods proposed in the literature for NCS 
with/without communication constraints in the actuator side.  
A quarter car model shown in Fig. 5 was used for the 
simulation. The quarter car model represents the automotive 
system at each parameter, m2. The sprung mass represents the 
quarter car equivalent of the vehicle body mass, which is 
subjected to oscillation compensation through suspension 
mechanisms. The unsprung mass, m1, represents the equivalent 
mass of the axle and tire; it is not subjected to compensation, 
and no control is applied to it. The vertical stiffness of the tire is 
represented by the spring, k1. Variables z2, z1 and zr represent 
the vertical displacements from the static equilibrium for the 
sprung mass, unsprung mass, and road, respectively. 

Dynamic equations of the two degrees of freedom quarter 
car suspension system are given by: 

   1 2 2 2 1 2 2 1 ,am z F k z z c z z       

     2 1 2 2 1 2 2 1 1 1 .r am z k z z c z z k z z F         
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Table 1. Typical values for car suspension system. 

Parameter m2 m1 k2 k1 c2 mj 

Value 1,400 kg 100 kg 6 kN/m 100 kN/m 1 N/m 0.15 m

 

The suspension spring and tire stiffness are presumed to 
behave linearly in the operating ranges. Additionally, the tire is 
assumed to not leave the ground. A state space representation 
is:  
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where zr represents the input disturbance, which enters the 
system dynamics through input disturbance matrix 1c

dB . 

It is assumed that quarters have no interaction; therefore, the 
complete model is derived by augmenting the states of 
subsystems as four disjointed plants. Considering typical 
values for the system parameters stated in Table 1, the 
continuous time plant is sampled with a sampling time of  
100 msec. Table 1 additionally depicts the parameters of the 
scheduling optimization problem defined in (27).  

Note that only the first state variable is available by 
measurement. This is because measuring the displacement 
velocity is expensive and noise-sensitive, and measuring the road 
disturbance is not possible. It is assumed that control action is 
centrally accomplished within the processing system. Sensory 
data are delivered to the processor through a shared bus. 

Figures 6 to 8 show the actual state variables, the associated 
estimated states when a round-robin schedule is applied, and 
the associated estimates when the proposed scheduling method 
is applied. For both scheduling methods, a Kalman filter is 
designed based on (20) to (25) for the time-varying system 
resulting from the scheduling sequence. 

Figure 9 depicts the trace of the Ricatti equation solution as a 
measure for the estimation error. The results are promising; 
they show a significant enhancement in the estimation error. A 
delay appears in the estimated state (Figs. 6 to 8) because the  
data are transferred to the estimator with a delay equal to or 
smaller than the sensor communication sequence period. To 

 

Fig. 7. Actual x(t), round robin xr(t), and proposed method xp(t).
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Fig. 8. Squared estimation error. 
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Fig. 9. tr(P). 
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reduce this delay, one may reduce the sequence period, the 
smallest value of which is determined by (26). 

V. Conclusions  

In this paper, medium access scheduling is addressed for 
sensors in a networked control system in which measurements 
are transmitted by means of a bandwidth-limited network. It 
derives the formulations for the semi-online derivation of a 
periodic output communication sequence by specifying the 
order in which the sensors are to be granted medium access. 
For the optimization problem to be implementable online, 
estimation error covariance at a specific time horizon is 
considered instead of the summed square estimation error.  

The problem of determining the optimal sensor 
communication sequence is formulated as an optimization 
problem. The problem is then transformed into a convex 
problem by relaxing the non-convex constraints into convex 
constraints. Compared to previously examined approaches, the 
proposed method has the benefit of convexity and can be solved 
with less computational effort. The proposed method was 
compared to a round-robin schedule with respect to estimation 
error covariance via simulation experiments. The results showed 
promising improvement compared to round-robin scheduling. 
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