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File systems and applications try to implement their
own update protocols to guarantee data consistency,
which is one of the most crucial aspects of computing
systems. However, we found that the storage devices
are substantially under-utilized when preserving data
consistency because they generate massive storage
write traffic with many disk cache flush operations and
force-unit-access (FUA) commands. In this paper, we
present DJFS (Delta-Journaling File System) that
provides both a high level of performance and data
consistency for different applications. We made three
technical contributions to achieve our goal. First, to
remove all storage accesses with disk cache flush
operations and FUA commands, DJFS uses small-sized
NVRAM for a file system journal. Second, to reduce
the access latency and space requirements of NVRAM,
DJFS attempts to journal compress the differences in
the modified blocks. Finally, to relieve explicit
checkpointing overhead, DJFS aggressively reflects the
checkpoint transactions to file system area in the unit
of the specified region. Our evaluation on TPC-C
SQLite benchmark shows that, using our novel
optimization schemes, DJFS outperforms Ext4 by up
to 64.2 times with only 128 MB of NVRAM.

Keywords: High-performance, Journaling file system,
NVRAM, Reliability.

I. Introduction

Ensuring data consistency and durability is one of the
most crucial aspects of computing systems. To guarantee
system-wide consistency of file system data, a variety of
techniques have been proposed and deployed [1]–[4]. For
example, under Ext4, system-wide consistency is
guaranteed by first writing updated blocks to the journal
area during the commit phase and then writing them to
their original locations (that is, home locations) during the
checkpoint phase. If a sudden power loss or system failure
occurs, we can restore the file system to a consistent state
by using the journal data. Moreover, to guarantee
application-level consistency of critical data, applications
implement their own update protocols (for example,
Rollback and WAL modes of SQLite) [5].
However, we found that storage devices are

substantially under-utilized when preserving system-wide
and application-level consistency. First, Ext4 writes the
updated blocks twice, once in the journal area and once in
the file system area, for system-wide consistency. This can
increase the storage write traffic, and thus degrades the
system performance and shortens the lifespan of the
storage devices. In addition to duplicate writes, Ext4
invokes a disk cache flush operation with a force-unit-
access (FUA) command at the end of each of commit and
checkpoint phase to guarantee durability and the correct
ordering of updates. Unfortunately, these frequent disk
cache flush operations with FUA commands degrade the
system performance more seriously because the storage
firmware flushes all cached data in the DRAM write-cache
to non-volatile media upon the disk cache flush operation.
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Second, the update protocols of applications frequently
trigger fsync() system calls for application-level
consistency [6]. The frequent fsync() calls generate a
massive amount of random write traffic with many disk
cache flush operations that must be handled synchronously
[7]. In particular, each fsync() call blocks the application
until completion of the disk cache flushing, thereby
causing a non-trivial delay in the application performance.
To optimize the overall system performance, some file
systems, device drivers, and virtual machines deliberately
disable the disk cache flush commands [8]. However, this
cannot ensure the durability of the updates, and can
therefore lead to inconsistency in the file system. In
addition, to relieve the file system journaling overhead,
most computing systems adopt ordered journaling mode,
which writes only the file system metadata to the journal
area. However, this can lead to inconsistencies in the file
data upon system recovery, even if the file system
carefully orders the writing of file data and file system
metadata [9]. Furthermore, even if the computing system
adopts ordered journaling mode for the system
performance, update protocols of the applications impose
a significant performance overhead owing to the frequent
fsync() calls. In this paper, we propose DJFS (Delta-
Journaling File System) that provides both high reliability
and a high level of performance for different applications.
Our technical contributions to DJFS are as follows:
Journaling without Flushes: Based on several analyses,
we found that Ext4 periodically generates journal write
traffic with disk cache flush operations and FUA
commands. Furthermore, when applications are designed
to exploit fsync() for application-level consistency, the
fsync() calls incur excessive journaling overhead. Thus,
even if storage devices embed a great deal of DRAM
write-cache in order to optimize the storage performance,
the runtime performance is eventually bounded by the
speed of the disk cache flushing. DJFS removes all storage
accesses with disk cache flush operations and FUA
commands upon periodic commit operations or frequent
fsync() calls, while providing system-wide consistency.
Delta Journaling: We found experimentally that the use
of NVRAM journal with full journal mode does not
achieve the maximum performance owing to frequent
check-pointing overhead. To relieve this problem caused
by a lack of free journal area, we introduced a novel
mechanism for DJFS, called Delta Journaling, which
attempts to journal compress the differences in the
modified blocks, rather than the full blocks themselves,
while efficiently exploiting the byte-addressable
characteristics of NVRAM. We also found that, when the
journaling is triggered owing to an fsync() call, journal

metadata such as the journal descriptor (JD) and journal
commit (JC) consume only a few bytes, although they are
inefficiently journaled as a full block. Thus, to reduce the
volume of journal metadata writes, DJFS system only
writes to the used space of JD and JC.
Aggressive Group Checkpointing: Compared to the
original journaling, DJFS does not issue write requests to
the storage device upon periodic commit operations or
frequent fsync() calls by using small-sized NVRAM
efficiently as a journal area. Thus, DJFS has an
opportunity to exploit the idle time of the storage device.
To further relieve the overhead of frequent checkpointing,
we introduce an Aggressive Group Checkpointing scheme
that aggressively reflects the checkpoint transactions to the
file system area in the unit of the specified region. Using
this optimization scheme, we relieve the overhead of
stalled writes, and can thus further improve the application
performance.
We implemented DJFS based on Ext4. The evaluation

results with various benchmarks clearly show that DJFS
significantly improves the performance by up to 64.2
times by dramatically reducing the journal write traffic
along with the number of disk cache flush operations and
FUA commands through our novel optimization schemes.
The remainder of this paper is organized as follows.

Section II describes the background on the concepts and
issues regarding the consistency. The consistency
overhead and various related aspects are analyzed in
Section III. We discuss our design principles in
Section IV, and present the details of DJFS design in
Section V. We show our evaluation results in Section VI.
Finally, we present related works in Section VII, and
conclude our study in Section VIII.

II. Background

1. System-Wide Crash Consistency

File systems use a variety of techniques such as
journaling [3], [4] and copy-on-write [1], [2] to guarantee
system-wide crash consistency. Of these, we describe
Ext4, which is the basis of DJFS, in detail.
Ext4 provides three journal modes: writeback, ordered,

and full. For performance reasons, the writeback and
ordered modes journal only the file system metadata to the
journal area, and thus file data consistency is not
guaranteed after a system crash. Unlike writeback mode,
data ordering is preserved in ordered mode. This means
that dirty data blocks are flushed to the file system area
before the metadata blocks are written to the journal area.
The full journal mode logs all file data and metadata
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blocks to the journal area. This mode provides system-
wide consistency, but generates a huge performance
overhead owing to the bulky duplicate writes. Thus, all
high-performance production file systems including Ext4
only provide metadata consistency by default, even
though this can lead to inconsistencies in the file data
upon a system crash.
Ext4 communicates with the JBD2 journaling layer in

order to conduct the commit and checkpoint operations.
Specifically, a commit operation writes the updated blocks
to the journal area periodically (for example, in 5 s
intervals), or at an explicit sync request such as an fsync()
call, for potential use during a system recovery. After an
unclean shutdown, JBD2 replays the journal data in order
to restore the Ext4 to a consistent state. The checkpoint
operation updates the file system with the committed data.
We briefly describe the step-by-step procedure of Ext4
journaling, assuming that full journal mode is used.
To guarantee the atomic writing of multiple blocks,

JBD2 manipulates three types of transaction lists: running,
commit, and checkpoint transactions. A running
transaction maintains a list of dirty blocks after the
previous commit operation. Whenever a commit operation
is triggered, the running transaction is converted into a
commit transaction, and the dirty blocks of the commit
transaction are targeted for journaling. The jbd2 kernel
thread first writes a JD block to the journal area, as shown
in Fig. 1. The JD block starts with a 12-byte journal
header, which contains a magic number, header type, and
transaction number identifying the logged transaction. The
journal block tags follow the journal header, and describe
the original locations of the journal blocks that follow in
the journal. Although JD may consume a minimum of 36
bytes, it uses a full block inefficiently. The jbd2 kernel
thread then writes the dirty blocks to the journal area.
Meanwhile, if new block writes are performed during the
commit operation, JBD2 adds them to a new running
transaction for the next commit phase. After all dirty

blocks are committed, the jbd2 kernel thread writes a JC
block with a WRITE_FLUSH_FUA request to the journal
area to identify the end of the transaction. This means that
a disk cache flush operation precedes the writing of JC,
and the JC block is guaranteed to be on non-volatile media
upon completion. The JC block contains the journal
header, checksum, and commit timestamp. The JC
consumes 32 bytes, but also uses a full block inefficiently.
JBD2 then changes the state of the commit transaction
into a checkpoint transaction. Through this procedure, the
atomicity and durability of a commit operation are
guaranteed.
After the journal commit is completed, the dirty blocks

are exposed to virtual memory; after their dirty timers
expire, the blocks are written back asynchronously to the
file system through the writeback thread. The jbd2 kernel
thread periodically checks and removes the reflected
checkpoint transactions. Meanwhile, if a significant
amount of journal space related to the reflected checkpoint
transactions can be freed, the jbd2 kernel thread implicitly
reclaims the journal space and updates the journal
superblock with a WRITE_FUA request. We call this
operation implicit checkpointing. Unfortunately, if the
journal area does not have enough free space to handle the
upcoming write requests, the explicit checkpointing is
triggered. It induces that jbd2 synchronously reflects the
file system metadata or data in checkpoint transactions
into the file system with disk cache flush operations and
updates the journal superblock with WRITE_FUA
requests, until the minimal necessary journal space is
reclaimed for the new transaction [10], [11]. Especially,
since the explicit checkpointing is frequently triggered in
the write-intensive workloads, the runtime performance of
the system can be degraded in that application writes are
stalled during the reclamation of journal space.

2. Application-Level Crash Consistency

Applications are designed to keep their data crash-
consistent when preserving the consistency of application
data is crucial. We briefly describe the update protocol of
SQLite, which is used to ensure application-level crash
consistency.
SQLite provides Rollback and WAL modes to support

the atomicity of a transaction execution. In Rollback
journal mode (for example, DELETE, TRUNCATE, and
PERSIST), the original contents are copied to a rollback
journal file before updating them in the database, and thus
the changes can always be undone if the transaction
aborts. To guarantee the durability and correct ordering of
each committed transaction, two fsync() calls are first
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Fig. 1. Layout of the journal and data structures of JD and JC.
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invoked for synchronizing the original contents and the
journal header to the rollback journal file, and another
fsync() call is invoked for synchronizing the updated
database file [12]. In WAL journal mode, the original
contents are preserved in the database file and the updates
are first appended to a separate log file, and any
committed changes can therefore be redone by copying
them from the log file. Even though WAL mode can
decrease the sync overhead compared to Rollback journal
mode, WAL journal mode also invokes a fsync() call in
each transaction update or log file checkpointing.
Frequent fsync() calls for application-level consistency

incur excessive file system journaling, and thus create a
huge performance overhead as follows. First, frequent disk
cache flushing makes I/O scheduling meaningless owing
to fine-grained I/O processing. Second, they unnecessarily
increase the storage write traffic because the underlying
file system always issues a full block I/O to the storage
device, even if a small portion of the block is updated.
Furthermore, the overhead of the copying journal
metadata such as JD and JC also increases owing to
frequent journaling. Finally, the application is blocked
during every disk cache flushing, and thus suffers a non-
trivial delay quite frequently. For these reasons, there is a
basic trade-off between data consistency and high
performance when designing and implementing an
application.

III. Motivating Experiments

To analyze the overhead for ensuring data consistency,
we measured the write IOPS, the number of disk cache
control operations including disk cache flushes and FUA
commands, and the additional storage writes for
journaling, using the FIO benchmark [13]. In our
experiments, to understand the system-wide and
application-level consistency overhead, the frequency of
the fsync() calls was varied from never to once every 64
writes, (see Section VI for a detailed description of the
FIO configuration). Ext4 is used as a file system that
provides system-wide consistency, and a Samsung 840
SSD is used as a secondary storage device.
First, we found that the journaling technique generates

additional journal write traffic for potential use during a
system recovery, as shown in Fig. 2(d). Moreover, to
guarantee the durability and correct ordering of the
updates, it issues disk cache flush operations and FUA
commands during the commit and checkpoint operations,
as shown in Figs. 2(b) and 2(c). In particular, owing to
massive journal writes for file system metadata and file
data, Ext4 full journal mode degrades the write IOPS by

up to 43.6% when compared to no journal mode, as
shown in Fig. 2(a).
Second, we found that the number of disk cache flush

operations and FUA commands increases dramatically in
both ordered and full journal modes when the frequency
of fsync() increases, as shown in Figs. 2(b) and 2(c).
This is because frequent fsync() calls trigger a commit
operation within a very short interval. Furthermore, we
also found that the excessive commit operations
seriously increase the overhead of file system metadata
journaling and journal metadata writes such as JD and
JC blocks (that is, a Journaling of Journal (JOJ)
anomaly), as shown in Fig. 2(d), and thus degrade the
write IOPS of the storage device drastically in both Ext4
ordered and full journal modes, as shown in Fig. 2(a).
In addition, the write IOPS of no journal mode is
seriously affected by frequent fsync() calls because no
journal mode issues a disk cache flush operation per
fsync() in our evaluation kernel, as shown in Fig. 2(b).
From the experiments, we found that update protocols
for application-level crash consistency incur a huge
performance overhead because fsync() calls are heavily
used to maintain their transactions [14].

IV. Design Principles

The design of DJFS begins with a simple question: How
can the file system provide both high performance and
strong data consistency for an application? In this section,
we discuss three differentiated design principles to achieve
our goal.
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File System-Level Approach: To reduce the performance
overhead while preserving the data consistency, various
changes have been made in the I/O stack, including an
update protocol of the applications, the file system, and the
storage firmware [6], [15]. However, these solutions cannot
be broadly applied to diverse computing systems because
they are optimized for specific environments. To obtain a
general solution, we designed and implemented DJFS based
on Ext4, which is widely adopted in modern computing
systems, ranging from a battery-powered smartphone to an
enterprise server. Furthermore, we directly exploit file
system-level semantics only, and thus do not require any
modifications to the applications, device drivers, or storage
firmware.
Ensuring Data Consistency: In terms of system-wide
consistency, most computing systems adopt ordered
journaling mode, even though this can lead to
inconsistencies in the file data upon a system crash. This is
because the full journal mode seriously increases the
storage write traffic, and thus decreases the overall system
performance. Moreover, in terms of application-level
consistency, update protocols of the applications incur a
huge performance overhead owing to the frequent fsync()
calls. DJFS aims to provide both high performance and
data consistency as the full journal mode in the system
level and mitigate the overhead of application-level
consistency in the file system level.
Exploiting NVRAM: Traditionally, non-volatile DRAM
(NV-DRAM) has been widely used as a write-cache of a
storage device in order to enhance the write response time.
Now, owing to recent advances in NVRAM technologies,
such as phase-change memory (PCM) and spin-transfer
torque magnetic RAM (STT-MRAM), they are being
considered as a replacement for the main memory [16] or
file system storage [17], [18]. However, it is difficult to
completely replace the main memory or file system
storage with NVRAM owing to its limited density and
high cost, although it provides low latency comparable to
DRAM. In this regard, we devoted significant effort to
find an efficient way to exploit small-sized NVRAM.

V. System Design

1. Journaling without Flushes

A simple solution to relieve the consistency overhead is
to use external journaling. Previous research [15] has
shown the effectiveness of external journaling in Android
mobile devices. Ext4 has an option of journaling updated
blocks on a separate block device. Through external
journaling, we can split the storage writes into two groups

of journal writes and file system writes, and can thus
prevent a situation in which heavy I/O loads are
concentrated into a single storage device. Furthermore, we
can remove randomness in the aggregate traffic by
separating the file system and journal I/Os; the locality in
the file system area is random, whereas that in the journal
area is sequential.
To verify the effectiveness of external journaling, we

conducted experiments with the FIO benchmark on two
Samsung 840 SSDs; one is for the file system device and
the other is for the journal device. In addition, Ext4 is
mounted with full journal mode to provide system-wide
consistency. As shown in Fig. 3(a), in the case of no
fsync() mode, external journaling improves the write IOPS
by 46.1% compared to the conventional full journal mode
of Ext4; both are full journaling, but one uses an external
device for the journal area. However, external journaling
does not gain an outstanding achievement in the case of
fsync() mode because the I/O performance of external
journaling is eventually bounded by the speed of the disk
cache flushing. Through our experiments, we found that
external journaling is a viable option for system-wide
consistency, but cannot relieve the application-level
consistency overhead.
DJFS adopts the full journal mode of Ext4 and uses

small-sized NVRAM for a file system journal area. This
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can remove all storage accesses with disk cache flush
operations and FUA commands upon periodic commit
operations or frequent fsync() calls, while providing
system-wide consistency. Of all types of NVRAM, NV-
DRAM and STT-MRAM are adequate for our journal
device because they promise similar access latency and
endurance as DRAM [19]. We also verified the
effectiveness of NVRAM journaling with the FIO
benchmark. As shown in Fig. 3(a), our first optimization
scheme achieves a performance improvement of up to 2.2
times when compared to external journaling. In particular,
this scheme gains outstanding achievements in the case of
fsync() mode because it can mitigate the overhead of
frequent fsync() calls. However, we found that there is
some room for a performance improvement in NVRAM
journaling. Owing to fast NVRAM journaling, explicit
checkpointing is frequently triggered to make free space in
the journal area, as shown in Fig. 3(b), and thus NVRAM
journaling does not achieve its maximum performance. To
further optimize the I/O performance, we introduce two
novel techniques in the following subsections.

2. Delta Journaling

The first approach to relieve the overhead of explicit
checkpointing is to reduce the size of the journal data.
This is a viable solution because file system updates are
mostly very small when compared to the size of an entire
block [20]. For example, file system metadata are
frequently updated, and only a few bytes of a block are
actually modified in such cases. Thus, to reduce the space
requirements of NVRAM journal, DJFS attempts to
journal the compressed differences of the modified blocks
(that is, delta), rather than the entire blocks themselves,
while exploiting the byte-addressable and non-volatile
characteristics of NVRAM. This optimization scheme,
called Delta Journaling, also reduces the access latency of
NVRAM because it writes significantly smaller amounts
of data in the NVRAM [21]. However, DJFS cannot log
all journal data in a delta form into the NVRAM journal
because each dirty block must first be logged as a form of
the entire block in order to guarantee a recovery from a
system failure. Furthermore, this may increase the
memory overhead because all dirty blocks are involved in
difference capturing and delta compression to make a
delta form. Thus, DJFS journals each dirty block in the
form of an entire block to the NVRAM journal first, and if
multiple commit operations are issued to the same dirty
block, the dirty block is then logged in a delta form. To do
so, each dirty block in the buffer cache is represented with
two state indicators, a normal state and a delta state. In the

following, we describe how DJFS manages the state of
each dirty block in detail.
Figure 4 shows the workings of DJFS during the

commit phase. Whenever a system call modifies the file
system data, the operating system fetches related blocks to
the buffer cache in order to minimize the number of
storage access operations. DJFS then initializes each block
using a normal state to initially log the journal data in the
form of the entire block. After a commit operation is
triggered, DJFS first writes a JD to the journal area. For
Delta Journaling, we add two fields, the offset and length
of the journal data, in the journal block tag.
In addition, to reduce the volume of the journal

metadata, DJFS writes only the data of the JD block,
excluding the unused space in the block. DJFS then
attempts to write the dirty blocks, such as file system
metadata and file data, to the NVRAM journal. At this
point, DJFS determines the journaling mode of each dirty
block. If the dirty block is in a normal state, DJFS writes
the entire block to the NVRAM journal, and simply
converts its state to delta in order to journal in delta form
upon the next commit operations. When the dirty block is
in a delta state, it writes the dirty block in delta form to the
NVRAM journal to reduce the access latency and space
consumption of the NVRAM. After all dirty blocks are
committed, DJFS writes the data of JC block to the
NVRAM journal to further reduce the volume of the
journal metadata.
As mentioned above, difference capturing and delta

compression are required for Delta Journaling. For
difference capturing, DJFS copies the original block in the
buffer cache before making a modification. It maintains a
list of the original blocks in DRAM to avoid reading them
from file system storage. Then, during the commit phase,
DJFS creates a difference block between the original and

Fig. 4. Overall architecture of DJFS and the commit operation of
DJFS.
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dirty blocks using a bit-wise XOR operation on the two
blocks. If multiple writes are issued to the same block in a
single transaction, the process of difference capturing is
required only once because the block in the buffer cache
absorbs multiple writes during the time interval between
commit operations. After capturing the difference, the
copy of the original block is dropped for efficient use of
DRAM space. For the delta compression, DJFS uses the
LZO lossless compression algorithm [22], which was
selected through experiments that are not described in the
current paper owing to a space limitation. The difference
block, which is made as a result of an XOR operation, is
compressed and then written to the NVRAM journal. It is
certain that as the size of the updates decreases, the results
of the XOR are dominated by zeros, and thus the
compression ratio can be high. The computation overhead
of the difference capturing and delta compression is
negligible when compared to block-level journaling.

3. Aggressive Group Checkpointing

The second approach used to relieve the overhead of
explicit checkpointing is to exploit the idle time of the
storage device. As mentioned previously, the checkpoint
transactions are reflected to the file system opportunistically
once they have been committed. Next, if the journal area
does not have a sufficient amount of free space to handle
upcoming write requests, explicit checkpointing is triggered
to reflect the checkpoint transactions into the file system
through disk cache flush operations and FUA commands,
until the minimal necessary journal space is reclaimed.
Because the default Ext4 journaling shares the file system
region and journal area in a single storage device, there is
no choice in the current checkpointing mechanism.
Compared to the original journaling, we do not issue

write requests to the storage device upon periodic commit
operations or frequent fsync() calls through the efficient
use of small-sized NVRAM as the journal area. Thus,
DJFS has the opportunity to exploit the idle time of the
storage device. To relieve the overhead of explicit
checkpointing, DJFS logically divides the NVARM
journal space into n checkpointing regions. In the example
shown in Fig. 5, we logically divide the NVRAM journal
into two regions. When one region becomes full, DJFS
simply switches to another region to handle upcoming
write requests maintained by the newly running
transaction. At this point, to guarantee a recovery from a
sudden system failure, DJFS converts the state of dirty
blocks in the checkpoint transactions into a normal state,
and thus upcoming write requests will first be committed
in the form of an entire block to another region.

Meanwhile, because the checkpointing will not interfere
with upcoming journal writes, DJFS aggressively reflects
the checkpoint transactions in the previous checkpointing
region into the file system device using a disk cache flush
operation and FUA command. Through this technique,
DJFS reclaims a large amount of journal area with only a
single disk cache flush operation and a single FUA
command, and thus secures the free space of the NVRAM
journal more quickly. Determining the number of
checkpointing regions is related to the I/O pattern of the
workloads and throughput of the file system device.

4. System Recovery

A sudden power loss or system failure can result in an
inconsistent state of the file system. After an abnormal
termination, DJFS restores the file system to a consistent
state without performing time-consuming consistency
checks on the entire file system. In the following, we discuss
how DJFS utilizes the journal data of NVRAM for a
recovery in detail. Figure 6 shows the workings of DJFS
during the recovery phase. When a system crash occurs
while committing a transaction, the committed transaction
may be partially logged in the NVRAM journal area. In this
case, to guarantee the atomicity of the transaction, we
simply invalidate the partially logged data from the
NVRAM journal area. In the example shown in Fig. 6,

Transaction #1 Free spaceTransaction #2 Transaction #3 Transaction #4

HeadTail
T6: Issue a disk cache flush operation 

and update tail with an FUA command

TimeT1

Tr #2 
commit

Tr #3 
commit

Tr #4 
commit

T2 T3 T4

Tr #1 
commit

Checkpointing region

Start Group 
Checkpointing!

Fig. 5. Overall sequence of Aggressive Group Checkpointing.

Fig. 6. DJFS operating in the recovery phase.
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because a system crash occurs before completely logging the
fourth transaction, DJFS invalidates the fourth transaction
during the recovery phase. Consequently, DJFS can be
restored to the last committed consistent state by reflecting
all journal data of fully logged transactions into their original
locations. As mentioned previously, to ensure a recovery
from a system failure, DJFS first journals each dirty block in
the form of an entire block to the NVRAM journal. Thus,
the updated contents of blocks a0, b0, c0, d0, and e0 are first
logged in the form of an entire block, and if multiple
commit operations are issued to them, the dirty blocks are
then logged in a delta form. When a dirty block is logged in
delta form, the committed dirty block is made through an
XOR operation between the previous modification and the
decompressed delta, as shown in Fig. 6. Through this
procedure, DJFS can replay all fully logged transactions
while ensuring recovery to a consistent state, even when a
system crash occurs during checkpointing or recovery.

VI. Evaluation

1. Experimental Setup

For the evaluation, we implemented DJFS based on
Ext4 in the Linux kernel version 4.1, and then installed
our prototype on a conventional machine equipped with
an Intel Core i7-3770K CPU and 8 GB of DRAM. We
used 120 GB Samsung 840 SSDs for the secondary
storage devices. In addition, we allocated 128 MB of
DRAM (equal to the size of the default journal area) as
our target journal device, in order to simulate NV-DRAM
or STT-MRAM. To correctly emulate the performance of
NVRAM in the existence of volatile CPU caches, we log
the journal data into NVRAM by using a non-temporal
memory copy, which includes a cache line flush and
memory fence operations (for example, clflush and
mfence) [23].
All experiments were conducted using default journaling

configurations. We first compared DJFS with ordered and
full journal modes of Ext4 that adopt an on-disk journal
(OJ-O and OJ-F, respectively). We also compared DJFS
with Ext4 full journal mode, which adopts an external
journal (EJ-F), in order to verify the effectiveness of
removing journal write traffic from the file system storage.
For the performance experiments of DJFS, we first
examined the performance of our first optimization scheme,
called Journaling without Flushes (NVJ), in order to
analyze the performance of DJFS in more detail. We then
examined the performance of DJFS using two and four
checkpointing regions (NVJ + DJ + AGC2 and NVJ +
DJ + AGC4).

2. Runtime Performance

We first evaluated the random write performance of
DJFS using the FIO benchmark [13]. We conducted
experiments using a random write pattern and 4K files,
each of which has a size of 1 MB, by varying the
frequency of fsync() calls from never to once every 64
writes, in order to evaluate the performance of DJFS for
both system-wide and application-level consistency.
Figure 7 shows the write IOPS of FIO benchmark. In the
case of no fsync() mode, DJFS outperforms the on-disk
journaling of Ext4 full journal mode by up to 1.7 times.
Furthermore, its performance is close to the performance
of the on-disk journaling of Ext4 ordered mode, although
DJFS guarantees a higher level of system-wide
consistency. This is because we eliminate journal write
traffic from frequent disk cache flush operations and FUA
commands on the file system device.
In addition, when fsync() calls were used in the

experiments, DJFS outperformed both on-disk journaling
of Ext4 ordered and full journal modes by up to 5.1 times.
The reason for this is that, as the frequency of fsync() calls
increases, the numbers of disk cache flush operations and
FUA commands increase dramatically in the on-disk
journaling of Ext4. Meanwhile, DJFS does not suffer from
JOJ anomalies, despite fsync() calls being heavily used to
ensure application-level consistency. When compared to
the external journaling of Ext4, DJFS improves the write
IOPS by up to 4.0 times. In addition, when compared to
NVRAM journaling, DJFS improves the write IOPS by up
to 1.8 times because the combination of our optimizations
can relieve the explicit checkpointing overhead.
To evaluate the performance of DJFS for application-

level consistency, we also used the TPC-C SQLite
database benchmark [24]. The TPC-C workload produces
a large number of small reads and writes. During the
experiments, the number of warehouses was set to ten. We
measured the transactions processed per minute (tpmC) in
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Fig. 7. Runtime performance of FIO.
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both SQLite Rollback and WAL modes. For Rollback
mode, we used the PERSIST mode, which is widely
known as the fastest mode among all Rollback modes.
Fig. 8 shows the tpmC of TPC-C SQLite benchmark.
DJFS outperforms both on-disk and external journaling of
Ext4 by up to 64.2 times and 26.5 times in SQLite
Rollback and WAL modes, respectively. This is because
SQLite frequently triggers fsync() calls to maintain the
database transactions, and thus issues many disk cache
flush operations and FUA commands, as shown in
Table 1. In addition, such overhead is particularly severe
in Rollback mode owing to the high frequency of fsync()
calls [15]. Thus, both on-disk and external journaling of
Ext4 suffer from a non-trivial delay. As the experimental
results indicate, the average delta size per block is only
6.7% and 22.1% of the block size in SQLite Rollback and
WAL modes, respectively. The results indicate that our

second optimization scheme, Delta Journaling, greatly
reduces the access latency and space requirements of the
NVRAM journal, by efficiently exploiting the byte-
addressable characteristics of NVRAM.

3. Effects of NVRAMWrite Latency

To cover a wide range of NVRAM devices, we
examined the effects of NVRAM write latency on DJFS.
We performed experiments using the TPC-C SQLite
database benchmark, and measured the tpmC by varying
the write latency of NVRAM from 0 to +40 ns, compared
to that of DRAM. Assuming that the write latency of
DRAM is 10 ns, the write latency of NVRAM is from 1 to
5 times slower. In the experiments, we used PERSIST as
SQLite journaling mode.
Figure 9 shows the transaction throughput of DJFS by

varying the write latency of an NVRAM device. The
transaction throughput of NVRAM journaling and DJFS is
normalized through external journaling of Ext4 full
journal mode. As the write latency of NVRAM increases
compared to that of DRAM, the transaction throughput of
NVRAM journaling decreases rapidly. On the other hand,
as the write latency of NVRAM increases compared to
that of DRAM, the transaction throughput of DJFS
slightly decreases when compared to that of NVRAM
journaling; DJFS outperforms NVRAM journaling by up
to 3.52 times. This is because we devoted significant effort
to reduce the volume of journal data through the Delta
Journaling scheme, and thus the write latency of the
NVRAM device significantly decreases. In addition, even
though the write latency of NVRAM increases compared
to that of DRAM, both NVRAM journaling and DJFS
outperform on-disk journaling of Ext4 full journal mode;
even under the worst case situation, NVRAM journaling
and DJFS outperform on-disk journaling of Ext4 full
journal mode by 11.06 times and 38.89 times,
respectively. This means that our first optimization
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Fig. 8. Runtime performance of TPC-C SQLite.

Table 1. Disk cache control and journal writes of TPC-C SQLite
(normalized by OJ-O).

OJ-O OJ-F EF-F NVJ 2W 4W

Rollback

Disk
cache
control
(%)

FLUSH 100 99.2 99.5 0.4 0.003 0.006

FUA 100 99.3 99.6 0 0 0

Journal
writes
(%)

JM 100 99.3 99.5 104.6 2.1 2.1

Data 100 297.4 298.2 239.8 33.7 35.0

WAL

Disk
cache
control
(%)

FLUSH 100 99.3 99.3 1.3 0.02 0.03

FUA 100 100 100 0 0 0

Journal
writes
(%)

JM 100 100 100 103.7 2.6 2.7

Data 100 313.3 312.6 274.6 93.4 101.1

*JM: journal metadata including journal superblock, JD, and JC.
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Fig. 9. Transaction throughput of DJFS by varying the write
latency of NVRAM device compared to that of DRAM.
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scheme, Journaling without Flushes, is quite effective for
the application performance.

4. Buffer Cache Performance

Because DJFS copies the original block in the buffer
cache before making a modification and maintains a list of
original blocks in the DRAM for Delta Journaling, it may
degrade the space efficiency of the buffer cache. To
investigate the memory overhead when storing the
original blocks, we compared the buffer cache miss ratio
of the original buffer cache scheme, which uses the
DRAM space only for caching (BF-Original), along with
DJFS. During the experiments, we configured the size of
DRAM from 10% to 100% relative to the I/O footprint.
Thus, only cold misses occurred in the original buffer
cache scheme when the size of the DRAM was 100%. As
shown in Fig. 10, the buffer cache performance of DJFS
exhibits only a marginal degradation when compared to
that of the original buffer cache scheme under all I/O
workloads. This is because we drop the copy of the
original block after capturing the differences for an
efficient use of the DRAM space. In addition, DJFS first
journals each dirty block in the form of the entire block to
the NVRAM journal, and thus only frequently modified
blocks are involved in the copying process. The last
reason for this is that I/O workloads have a non-uniform
access frequency distribution [25]. Specifically, the update
frequency of the I/O workloads is highly skewed, and thus
the list of original blocks in DJFS occupies only a small
portion of the DRAM space.

VII. Related Works

Consistency Overhead. Some studies have focused on
a JOJ anomaly, which originates from the fact that the file
system journals the database journaling activity. Using
optimal journaling mode in SQLite, adopting external
journaling, and exploiting polling-based I/O, Jeong and

others [15] improved the smartphone performance by
optimizing the Android I/O stack in such a way that
unnecessary metadata journaling is eliminated for the file
system. Min and others [6] presented a new file system,
CFS, which supports a lightweight native interface for
applications to maintain crash consistency of the
application data on transactional flash storage. To
guarantee application consistency, CFS uses three key
techniques: the selective atomic propagation of dirty
pages, in-memory metadata logging, and delayed
allocation. Our work differs from these studies in that we
directly exploit file system-level semantics only, and thus
do not require any modification of the application, device
driver, or storage firmware.
Other studies have focused on the journaling overhead

in various storage architectures. Lee et al. [26] proposed a
new buffer cache architecture, UBJ, which eliminates the
storage accesses upon a commit operation by using an in-
place commit technique. With this technique, the caching
and journaling functions are subsumed in a unified
NVRAM space. However, UBJ requires a sufficiently
large NVRAM to cover them. In contrast to this work, we
can help reduce the cost of expensive NVRAM, while
satisfying the desired level of performance. In a recent
study [27], DuraSSD was shown to eliminate the need for
write barriers with disk cache flush operations by making
the DRAM write-cache inside durable SSD using tantalum
capacitors. In addition, some high-end SSDs contain a
power-protected DRAM write-cache. DJFS further
improves the performance and lifespan of these products
by reducing the write traffic to them, although DJFS was
designed for broader use.
NVRAM Utilization: Some studies have focused on an

NVRAM/NAND flash hybrid architecture that utilizes the
byte-accessibility and in-place updating of NVRAM to
complement the hardware limitations of NAND flash-based
storage. First, Sun et al. [28] utilized NVRAM as a log
region inside NAND flash-based storage. Thus, small
updates can be effectively absorbed in this hybrid storage
device because the NVRAM log region allows in-place
updates. The second approach utilized NVRAM as a
metadata storage component [20]. The reason for this is that
file system metadata are frequently updated, and only a few
bytes are actually modified. Thus, to reduce excessive
garbage collection overhead in NAND flash-based storage,
they utilized NVRAM to log the file system metadata.

VIII. Conclusion

In this paper, we proposed DJFS that efficiently utilizes
small-sized NVRAM for a file system journal in order to
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provide both a high level of performance and data
consistency for different applications. To achieve our goal,
we made three technical contributions: Journaling without
Flushes, Delta Journaling, and Aggressive Group
Checkpointing. Our experiment results clearly show that
DJFS outperforms Ext4 by up to 64.2 times with only
128 MB of NVRAM. This work will contribute to an
analysis of the overhead for ensuring data consistency. In
addition, we presented a practical file system solution that
does not require any modifications to the applications,
device drivers, or storage firmware, and incurs only a
slight increase in hardware costs. In addition, our solution
can be easily applied to many different types of systems.
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