ETRI Journal, Volume 39, Number 4, August, 2017
http://etrij.etri.re.kr

493

Space-Time Warp Curve for

Synthesizing Multi-character Motions

This paper introduces a new motion-synthesis
technique for animating multiple characters. At a high
level, we introduce a hub-sub-control-point scheme
that automatically generates many different spline
curves from a user scribble. Then, each spline curve
becomes a trajectory along which a 3D character
moves. Based on the given curves, our algorithm
synthesizes motions using a cyclic motion. In this
process, space-time warp curves, which are time-warp
curves, are embedded in the 3D environment to control
the speed of the motions. Since the space-time warp
curve represents a trajectory over the time domain, it
enables us to verify whether the trajectory causes any
collisions between characters by simply checking
whether two space-time warp curves intersect. In
addition, it is possible to edit space-time warp curves at
run time to change the speed of the characters. We use
several experiments to demonstrate that the proposed
algorithm can efficiently synthesize a group of
character motions. Our method creates collision-
avoiding trajectories ten times faster than those
created manually.
3D

Keywords: 3D motion crowd

animation.

synthesis,

Manuscript received Sept. 20, 2016; revised May 11, 2017; accepted May 22,
2017. This work was supported by the National Research Foundation of Korea
and funded by the Korean government (Grant No. 2015SR1D1A1A010590).

Mankyu Sung (corresponding author, mksung@kmu.ackr) is with the
Department of Game and Mobile Contents, Keimyung University, Daegu, Rep. of
Korea.

Gyu Sang Choi (castchoi@ynu.ac.kr) is with the Department of Information and
Communication Engineering, Yeungnam University, Gyeongsan, Rep. of Korea.

This is an Open Access article distributed under the term of Korea Open
Government License (KOGL) Type 4: Source Indication + Commercial Use
Prohibition + Change Prohibition (http://www.kogl.or.kr/news/dataView.do?data
1dx=97).

https://doi.org/10.4218/etrij.17.0116.0669

©2017 ETRI

Mankyu Sung and Gyu Sang Choi

I. Introduction

During the last decade, crowd simulation has been a hot
topic in the computer-animation research community. It is
widely used in a variety of applications, for example,
games or feature films. However, animating a number of
characters still poses many technical hurdles that must be
overcome. First, each individual must have realistic
movements, although group behavior is considered as
important as individual behavior. Second, characters must
avoid collisions during simulations because they are
visually annoying artifacts. However, it is not easy to
check for collisions as the number of individuals
increases. Third, we need an easy-to-use interface to
specify the crowds’ trajectories. As it is unimaginable to
specify every trajectory manually, this needs to be
accomplished automatically. Further, we would need to
provide a method to adjust the trajectories afterward.

This paper proposes a new motion-synthesis method
for crowd animations. At the high level, we propose a
simple yet quite practical hub-control scheme for
automatically specifying trajectories of individual
characters. In this scheme, users are first required to input
a single scribble in the virtual environment by dragging
the mouse. Then, the trajectories are fitted with cubic B-
spline curves, because the scribble may have undesirable
sharp corners that are not appropriate for smooth
motions. Users who wish to change the shape of the
trajectory can adjust it by simply changing the positions
of the control points of the spline curve. Then, from the
initially fitted spline curve, our algorithm automatically
creates n different curves through the hub-sub-control-
point scheme.

In this scheme, hub-control points are usually control
points from the initially fitted curve. Sub-control points
are a set of control points maintained inside the hub-

pISSN: 1225-6463, eISSN: 2233-7326

http://www.kogl.or.kr/news/dataView.do?dataIdx=97
http://www.kogl.or.kr/news/dataView.do?dataIdx=97
http://etrij.etri.re.kr

494

control points for automatically generating different
curves. The hub and sub-control points are given offset
distances to obtain different shapes from the original
curve.

At the low level, our algorithm creates motions on the
curves with a single cyclic motion-capture sequence. For
synthesizing motions, we propose using a disparity map
that indicates the orientation difference between the root
joint and the curve tangent to improve motion quality.
During this motion synthesis, space-time warp curves are
automatically embedded in the environment.

The space-time warp curve is created based on the speed
of a character. That is, the upward vector of the curve is the
time domain, and the slope of the curve changes according
to the motion speed. Users can observe whether the created
trajectories cause any collisions by simply checking
whether any space-time warp curves intersect. The time
warping of the motions, which is responsible for changing
the motion speed, is easily achieved by dragging the curve
upward or downward with the mouse. We performed a
series of experiments to validate our algorithms.

II. Related Work

A wide variety of approaches for simulating and editing
crowd motions have been proposed. Classical approaches
include particle systems or social forces [1], [2], which
attempt to control crowds using simple dynamics. Rather
than managing crowds as an aggregate of individuals,
some approaches consider crowds as a continuum object
[3]. Although these approaches may be useful for
simulating the aggregate behavior, they do not consider
the quality of individual motions.

To overcome this problem, motion-synthesis researchers
have proposed several techniques for editing a group of
character motions [4]-[6]. Their approaches are mainly
inspired by mesh-deformation techniques that allow users to
manipulate a particular vertex and deform the entire mesh
interactively. If we imagine an individual in a crowd to be a
vertex, the deformation technique is quite effective.
However, although these techniques can produce natural
motions using pre-captured motion clips, their interface is
not easy to use because they have separate interfaces for
controlling the spatial trajectory and timing control.
Moreover, their approaches do not provide a method for
controlling the finely detailed motions of individuals because
the deformation affects the animation of the entire crowd.

Our proposed approach is similar to theirs in that we
also synthesize individual motions using motion data.
However, unlike their approach, we propose a scribble-
based interface to specify the initial trajectory of the

https://doi.org/10.4218/etrij.17.0116.0669

ETRI Journal, Vol. 39, No. 4, August 2017

crowds and propose space-time warp curves that are
embedded directly into the environment to control the
spatial and timing changes of motion.

The scribble-based interface is quite useful because we
can create a number of different trajectories with a single
stroke. A similar scribble-based interface was introduced
in [7]. However, their goal was to coordinate motions
between multiple characters using a motion graph.
Therefore, the scribble acts as a rough path for synthesized
motions. A hard-constrained path cannot be easily
satisfied because of the nature of the motion-graph-based
motion-synthesizing algorithm.

For globally coordinated crowd movement, Barnett and
others proposed the Reeb graph approach, based on a
harmonic field for given starting and goal positions of
individuals [8]. This approach produces sampled paths
called “guidelines” from the globally coordinated graph.
This approach is quite efficient for simulating group
behavior; however, it has difficulty manipulating each
trajectory in a highly detailed manner. Other researchers
recently proposed a patch-based approach [9], which
constructs environmental building blocks known as
motion patches, which are annotated with motion data.
The patches are then connected to build more-complex
interactions. Our approach can be easily extended to
accommodate this type of patch data structure because it
can abstract and encapsulate a set of trajectories.

III. Algorithm

1. Path Creation through a Hub-Sub-Control Point
Scheme

The proposed algorithm requires the user to input an
initial path. Intuitively, this path represents a rough path
along which the crowds move. We use a scribble interface
that enables a user to directly draw a path on the 3D
environment by dragging the mouse. We project 2D mouse
positions onto 3D positions in the environment by simply
shooting a ray from the 2D screen coordinate onto the 3D
environment floor and then determine the 3D intersection
positions. While the mouse is being dragged, we track the
distance between the current position and the previous
position. If the distance is shorter than a pre-defined
distance threshold, it is discarded. This can minimize the
number of 3D points needed to construct the initial path.

Suppose Pi, where 0<i<m, is a set of points
representing the initial path. Starting with 7, we fit the
points with a cubic B-spline curve. Spline fitting has
several advantages. First, it can transform the rough initial
path into a smooth curve, which is required to obtain

Mankyu Sung and Gyu Sang Choi

natural motions. Second, we can easily adjust the shape of
the curve by changing the positions of the control points.
However, since we aim to generate many trajectories for
multiple characters, a single curve generated from the
initial scribble is insufficient.

Our algorithm generates n different curves automatically
by enabling each main control point to maintain a list of
sub-control points. The sub-control points can be used to
create another spline curve; however, their positions are
constrained by the parent control point. Therefore, when a
parent control point changes its position, its entire set of
sub-control points changes accordingly because the
distance between the parent control point and sub-control
points remains constant.

The positions of the sub-control points should satisfy
two requirements. First, the distance between each sub-
control point must exceed the predefined minimum
distance. Second, the distance between the parent control
point and each sub-control point must maintain the
predefined minimum distance. We refer to the parent
control points as hub-control points. The hub-sub-control-
point scheme is used to more easily generate multiple
crowd trajectories.

In our scheme, we only allow the user to move the parent
control point. The sub-control points are re-located
automatically as the parent control point changes its
position. Our algorithm simply maintains the initial 3D
offset distances between the parent and sub-control point
even after the parent point changes its position. This may
change the trajectories’ shape. However, we believe that it
is acceptable for crowds because it allows more variation in
the movements. If we want to keep the initial shapes of all
the trajectories, even after changing the parent control
point, we may need an optimization process to find optimal
positions for the sub-control points. In this case, it is better
to use a mesh-deformation technique; see [4], for example.

Figure 1 shows five different curves that were created
from a single scribble. Note that since the sub-control
points maintain their offsets from the hub-control points,
their curves have different shapes.

In our approach, the B-spline fitting of a set of
initial scribble points starts by deciding the number
of hub-control points. The number of hub-control
points is determined by the length of the initial
scribble. The number of hub-control points H, can be
calculated as

H, = E» (1)
where L is the length of the scribble and S is the length of
the trajectory of a single cyclic motion, which is input by

495

(a)

Fig. 1. (a) Initial scribble and (b) set of curves generated by hub-
control points.

the user. An excessive number of control points is difficult
to maintain, even though it allows finely detailed curve
changes. Too few control points are undesirable for the
opposite reason. Our approach considers the length of the
single cyclic motion to be used for the synthesizing
motion. Thus, our aim is to place a control point whenever
we repeat a cyclic motion, thereby minimizing unnatural
motion.

The position of the cubic B-spline at parameter u can be

obtained as [10]
Pt = ZciBi(u),
i=0

@

where B;(u) are the basis functions. For the cubic B-
spline, the basis functions are

[}

B():lu
B, :§[4—6u2+3u3]
By = ¢[1 = 3u+ 3u® — u’]

If we transform the above equation into matrix form, we
obtain

-1 3 =31
1{3 -6 3 0
P =1 v u 1]=
6(-3 0 30 “)
1 4 1 0
[ci civ1 cir2 cigsl,

where 0 <u < H, — 3.

Given n scribble points P, where 0 <i<n, and a cubic
spline curve, fitting the cubic B-spline curve basically
entails finding the positions of the hub-control points c;
The solution can be found in a least-squares manner by
solving a linear equation formed from (4). This
equation can be represented in the form Ax = B, where
matrix x contains the control points, B is an n X 2 matrix
representing the scribble points, and matrix 4 is an
n x H, matrix that computes the right-hand side of (4)
above, except

http://etrij.etri.re.kr

http://etrij.etri.re.kr

496

)

Equation (5) can then be solved using a popular
decomposition method, such as the Cholesky
decomposition [11].

Once we construct a cubic B-spline curve from the
scribble points, we extend it by automatically adding sub-
control points, which automatically generate a set of
different curves. The offset distance between the original
hub-control point and sub-control points is defined
beforehand and can be set differently for each hub-control
point. This benefits controllability because we can control
the dispersion and scattering of the crowds.

Figures 2 and 3 show the relation between the distance
constraint and its effect on the crowd trajectories. Note that
we also enforce a constraint between the sub-control points,
such that they also maintain the minimum-distance cons-
traint. The simple pseudo-code for setting the positions of the
sub-control points is given below. This aims to reduce the
chances of different characters colliding with each other. The
number of offsets is the same as the number of individuals.

//min_inter: minimum inter-control point
distance

//min_dist: minimumdistance fromthe hub-
controlpoints

WHILE (1)
X=rand(); Y=rand();
FORItoN
if dist(X,Y,Point[i]) <min_inter &&
dist(X,Y,CX,CY)) <min_dist)
Point [N] =Point(X,Y);
N++;
BREAK ;
END IF
END FOR

ENDWHILE

The proposed hub-sub-control-point scheme has an
advantage from a user-interface point of view. If we were to
separately generate independent curves, the number of
control points would be too many to handle. However, since
our approach maintains offset constraints on the sub-control
points, moving the hub-control points results in the related
sub-control points automatically changing their positions.

2. Two-Step Motion Synthesis on the Curve

Given the curves, we need to synthesize motions such
that the 3D characters move along the curves. Our

https://doi.org/10.4218/etrij.17.0116.0669

ETRI Journal, Vol. 39, No. 4, August 2017

Hub-control point

Fig. 2. Hub-control points and sub-control points.

Fig. 3. Distance-constrained sub-control points.

algorithm repeatedly uses a single cyclic motion. A
particular i frame of a cyclic motion consisting of m frames
and k joints can be represented as a vector, as follows:

Ml:{péhqa’qllv”' (6)
where py is the root-joint position at frame 7, which
corresponds to the global position of the complete
character, g is its global orientation, and g; is the local
orientation of joint j. In most cases, the motion skeleton is
constructed hierarchically and the root joint is the pelvis
joint located at the center of the body.

Since the position and tangent of a particular parameter u
can be analytically evaluated from the B-spline equation,
the problem is reduced to finding « from the motion data.
We use an approach similar to that proposed by Gleicher
and others [12], who proposed an arc-length para-
meterization to find the parameter u based on the length of
the arc. The arc-length between two adjacent frames can be
calculated as ||y — ' [l e, Where ||pllpro is the 2D
projection of 3D point p onto the ground.

However, if we use their technique, the subtle nuances
of the original motions are difficult to preserve when we
change the root-joint orientation based only on the curve
tangent. Thus, for our algorithm, we propose a two-step
method to synthesize the motion for cubic B-spline curves.
In the first step, we first fit the original cyclic motion with a

7612}7pi6R37qi6S3,0§i§m’

Mankyu Sung and Gyu Sang Choi

cubic B-spline curve as we did for the scribble. Then, from
the spline curve, we perform arc-length parameterization to
find the parameters for all the frames. Once we find the
parameters, we calculate the tangent angles for all the
frames. We then construct a disparity map that shows the
3D-orientation difference between the tangent angle of the
curve and the root-joint orientation ¢.

Mathematically, suppose a is the 2D tangent angle at the
particular parameter u of the curve. Then, the disparity
map d(u) at parameter u can be calculated as

d(u) =qq (cos (g) ,0, sin (g) , 0> .qal, @)

where g(w, x, y, z) is the 3D quaternion representation.

Once we construct the disparity map, the algorithm
synthesizes a series of frames as it increases parameter u
from 0 to H,, — 3. Note that if the arc-length of the curve is
longer than the original motion, we repeat the motion. The
new orientation ¢, at a particular u on the cubic B-spline
curve from the scribble can be computed as

CIL = qu'd(”)‘ ®)

Figure 4 summarizes the two-step motion-synthesis algorithm.
3. Space-Time Warp Curve

Space-time warp curves are embedded in the 3D
environment and represent the trajectory over time.
Figure 5 shows a sample of the space-time warp curve.
This curve consists of 3D points w' whose x- and z-
coordinates are the 2D projected positions on the ground
from the root-joint position at every frame of the motion.

Cyclic motion Cubic B-spline

fitting

Building the root joint
orientation disparity map

Apply the map on the
arbitrary curve

Fig. 4. Two-level motion-synthesis algorithm.

Space-time warp curve Y. . .. --ccev e

Fig. 5. Example space-time warp curve.

497

The y-coordinate represents particular times on the time
domain and increases as a function of evolving time.

In our approach, the slope of the curve reflects the speed
of the motion. If the motion occurs at a constant speed, the
slope is also constant. The y-coordinate w(i) at frame i
can be calculated as

||p6 _pé)_l Hproj

wy(i) =+ A]s,5>0, ©)

where ¢ is a constant, Af is the time duration between two
adjacent frames, and s is the scaling factor.

The purpose of the space-time warp curve is to control
the timing of the motion and visualize the interaction
among the crowds. Many other approaches, for example,
the time-warp curve proposed by Kim and others [6], apply
separate interfaces to change the motion speed. However, it
is difficult to use these interfaces to change the speed at a
particular moment in the environment because the timing
control and positional control are separate.

Our proposed algorithm allows the user to change the
position of a particular point on the space-time warp curve
by simply dragging it with the mouse. The position
change is constrained only by the y-axis value. Then, from
the above equation, the new position of the root joint is

calculated from w (i) as

=t + () = 9] %.

proj

Po,., (10
The new root position may cause artifacts, such as foot-
skating actions, as we were forced to change the root-joint
position. We solve this problem by applying the foot-
skating solver proposed by Kovar and others [13].

Their algorithm applies the specialized
kinematic (IK) solver to adjust the knee and ankle
orientation for given foot-plant positions. To apply the IK
solver, we specified foot plants as tags in the motion data.
These tags indicate the joints that should touch the ground
during a particular range of frames. Our algorithm uses the
XML format to specify the foot-plant tags. For example,
<footplant> <35, 10, 15> </footplant> specifies that joint
number 5 must be planted on the ground between frame
numbers 10 and 15. Since we use the same cyclic motion
repeatedly, the tags from the original motion need to be
recalculated and added automatically. Then, given a list of
tags, the IK solver computes the knee and ankle angles
during the frames that require foot planting.

If we change only a particular point on the space-time warp
curve, we have an unnatural speed change in the middle. We
achieve consistency by applying Gaussian filtering to the
space-time warp curve, such that neighboring points are also
influenced by the changes. This process is explained in Fig. 6.

inverse-

http://etrij.etri.re.kr

http://etrij.etri.re.kr

498

Construct space-time —_
warp curve
A

User’s changes on the -
space-time warp curve

/1~\ ____________

Apply Gaussian — =
filtering ’

Root joint position
adjustment

Apply IK solver

Fig. 6. Speed changes using space-time warp curve.

Fig. 7. Example of changes on space-time warp curve. Red
point indicates target point.

Figure 7 shows an example in which a space-time warp
curve is applied to change the motion speed. Note that the
red dots indicate the target points of the space-time warp
curve. After repositioning the target points, the entire
curve is recalculated to reflect the speed changes.

If we allow complete freedom for changes on the space-
time warp curve, it may produce unnatural motion, because
the IK solver does not guarantee quality motion if the new
speed differs too much from the original. We guarantee good
quality motion by placing a constraint on the motion speed
so that the speed can change between a minimum of —50%
and a maximum of 200% through the space-time warp curve.

4. Collision Detection Using the Space-Time Warp Curve

When working with crowd-motion synthesis, the most
annoying problem is checking whether the synthesized

https://doi.org/10.4218/etrij.17.0116.0669

ETRI Journal, Vol. 39, No. 4, August 2017

motions generate any collisions and where the collisions
occur. Since our goal is to achieve realistic low-level
individual motion as well as high-level controllable crowd
formation, we need to detect a collision as fast as possible
by either changing the timing or trajectory of the motions
to avoid any collisions.

In our approach, the spatial trajectories are determined
through the hub-sub-control-point scheme. Therefore,
changing the control points to avoid collisions at a
particular point may not be appropriate because changing
the trajectory shape may cause other collisions in other
places. Instead, our aim is to avoid a collision by changing
the temporal motion speed. In this regard, our space-time
warp curve has an advantage: it can visualize the collision
because the x- and z-coordinates represent the 2D position
on the ground and the y-coordinate is the temporal
location.

Figure 8 shows two space-time warp curves. Even
though the two cubic B-spline curves intersect in the
middle, their space-time warp curves do not intersect,
which means that the two motions do not result in a
collision.

Since each character has a volume, rather than being a
point, two characters’ body parts may collide with each
other even though their space-time warp curves do not
intersect. We solved this problem by setting a minimum-
distance threshold value to test for intersection. Therefore,
if the distance between two points from two separate
space-time warp curves is within the threshold value, we
regard it as an intersection.

When we create a large number of motions for crowds
through a hub-sub-control-point-based spline curve, it is
impossible to adjust the motion speed for every
intersection point to avoid collisions if we must manually
change the shape of the space-time warp curve. Our
algorithm automates this process by finding the
intersection and changing the speed incrementally until no
intersections remain. When we detect an intersection point

Fig. 8. Collision test by checking intersection between two
space-time warp curves. Red box shows scene zoom-in.

Mankyu Sung and Gyu Sang Choi

between two space-time warp curves, we choose one of
the curves and change the speed immediately before the
intersection. Figure 9 shows an example of collision
avoidance. More details on the collision avoidance can be
found in the following pseudo-code:

int N//Number of curves
Curves C[N]; //Array containing curves
int Ti, Tj;
boolcollision;
While (!collision)
Collision=false;
For i=0toN
For j=0OtoN
If (IntersectTest(C[1i],C[7]))
collision=true;
Ti=1i; Tj=7;
Break;
End If
End For
End For
If (lcollision) break;
Else AdjustSpeed(Ti,T7j) ;
EndWhile

IV. Experiments

We validated our algorithm through a series of
experiments. The computing environment included an
Intel 17 CPU PC with 8 GB RAM and an Nvidia Geforce
GTX 560 graphics card. Characters were rendered using
the OpenGL library and the Fast Light ToolKit library for
user-interface design. The input data was a cyclic running
motion consisting of 27 frames. The motion-data format
was BioVision’s BioVision Hierarchy [14]. The resulting
video was uploaded on YouTube at https:/youtu.be/
aVITY3rXSvw.

The first experiment tested the ability of our hub-sub-
control-point scheme to control a cubic B-spline curve.
Figure 10 shows the result of our test. In this experiment,

Time Time

-

Character size

(a) X X

(b)

Fig. 9. (a) Before: two time-warp curves intersect in middle. (b)
After: second (red) time warp changes its shape to reduce
speed and avoid intersection.

499

the initial scribble was almost a straight line, but after we
fit the scribble with the cubic B-spline, we modified the
curve by changing the hub-control point. We preserved
the offset distances between the hub-control point and the
sub-control point even after we changed the position of
the hub-control points, which means that the positions of
the sub-control points were set and changed automatically,
based on their pre-defined offset distance to the hub-
control points.

Furthermore, for the first half of the curve, the offset
distance between the sub-control points and the hub-
control points was set to 2.0 and increased to 5.0 for the
second half of the curve. This results in a dispersion of the
curves toward the end. That is, the minimum-distance
constraint between the hub-control point and sub-control
points was set to 2.0.

The second experiment was designed to evaluate the
natural motion-synthesis algorithm. We compared two
cases. The first case involved using only the tangent angle of
the curve for root-joint orientation without a disparity map.
The second case used the tangent angle of the curve along
with the disparity-map technique proposed in Section II.

The result showed that the disparity map produced more
natural motions, since we accounted for the difference
between the current and original motion by considering
the curve angle. Thus, the disparity map produced more-
natural motions with enhanced stability. The comparisons
can be found on the YouTube video clip. Figure 11 shows
a screen shot.

The third experiment tested the group-motion synthesis.
We drew two scribbles and fit them with the hub-sub-
control-point scheme, which automatically generated three
additional curves. Each curve was then used to synthesize
the motion. In this process, the algorithm automatically
checks the intersection between the space-time warp
curves and reduces the speed until no further intersections
exist. Figure 12 shows the result.

For the final example, we set 30 characters in motion
using our technique. Figure 13 shows a screen shot of the

After fitting, we modify the
curve by changing hub control
point

Fig. 10. Trajectory creation through spline curves based on hub-
sub-control-point scheme.

http://etrij.etri.re.kr

https://youtu.be/aV9TY3rXSvw
https://youtu.be/aV9TY3rXSvw
http://etrij.etri.re.kr

500

movement. A more detailed animation can be found in the
YouTube video. In this scenario, all the characters
attempted to maintain a constant speed for as long as
possible. However, they changed their speed automatically
to avoid collisions. In complicated situations, some
collisions could not be prevented automatically. In those
cases, we allowed the user to change the speed manually
to avoid a collision.

Table 1 presents the performance of our algorithm as a
function of the number of characters. The motion-
synthesis times vary depending on the complexity of the
scene. We established that the most time-consuming step
involved changing the speed to avoid a collision, since the
algorithm must evaluate many different speed adjustments

Fig. 12. Example of group-motion synthesis.

Fig. 13. Example of motion synthesis with 30 characters.

https://doi.org/10.4218/etrij.17.0116.0669

ETRI Journal, Vol. 39, No. 4, August 2017

until no intersection remains between any two space-time
warp curves (Table 2).

One limitation of our algorithm is that we only apply our
technique to locomotion data. In the future, we hope to
extend our algorithm to more general types of motion, for
example, those associated with dancing or sports.
Additionally, through a small upgrade, we would like to
extend our algorithm to support characters of different sizes.

We currently avoid collisions using a simple, inefficient
brute-force algorithm. As a result, the character-formation
constraint cannot be satisfied because the character speed
is automatically adjusted on the fly to avoid collisions,
which makes it hard to maintain the formation. If we want
to set the formation constraints, we can cast the problem
as an optimization and solve it using a mathematical
optimization technique. We plan to design a more
sophisticated collision-avoidance algorithm in the future.

Another limitation of our technique is that it only works
on a flat surface because of the following reasons. First,
we used an input cyclic motion captured only on a flat
surface. Second, we used the y-axis as the time domain. If
we embed space-time warp curves in an uneven
environment, the simulation does not work properly
because the characters may not stay in the same time
domain, depending on their location on the uneven terrain.

To solve the first problem, we believe that we can extend
our algorithm by combining it with other techniques; for
example, motion-graph techniques or parameterized
motion-blending techniques, which use different styles of
input motions. To address the second problem, we can use
a separate imaginary time space where all characters can
exist at the same time. In that case, however, we must
sacrifice our advantage of embedding space-time warp
curves directly into the spatial environment.

Table 1. Our algorithm’s performance.

of characters Motion.— synthesis Avg. # of frames
time
1 ls 120
10 10s 250
30 40s 450
50 3min 12's 800

Table 2. Comparison between manual trajectory specification
and the hub-control-point scheme.

. Manual Hub-control-point
Amount of times . .
specification scheme
of trajectories 2545 125

Mankyu Sung and Gyu Sang Choi

V. Conclusion

In this paper, we introduced a new motion-synthesis
algorithm for multiple characters. At the high level, our
algorithm introduced scribble-based initial paths, which
were transformed into spline curves using the cubic B-
spline curve-fitting technique. We created a set of different
trajectories by introducing the hub-sub-control-point
scheme. Then, our algorithm generated a space-time warp
curve for each path to change the speed motion
automatically. The space-time warp curve offers
advantages in terms of visualizing collision detection as
well as providing a more user-friendly interface.

In Section IV, we compared the total amount of time
when we specified the trajectory manually with the time
when we used our hub-control scheme. It turns out that
our method created the trajectories 10 times faster than
those created manually.

References

[1] C.W. Reynold, “Steering Behaviors for Autonomous
Character,” in Proc. Game Developers Conf., San Jose, CA,
USA, 1999, pp. 763-782.

[2] D. Helbing and P. Molnar, “Social Force Model for
Pedestrian Dynamics,” Phys. Rev. E, vol. 51, Jan. 1995.

[3] A. Treuille, S. Cooper, and Z. Popovic, “Continuum
Crowds,” ACM Trans. Graph, vol. 25, no. 3, July 2006,
pp. 1160-1168.

[4] T. Kwon et al,, “Group Motion Editing,” ACM Trans.
Graph, vol. 27, no. 3, Aug. 2008, pp. 80:1-80:8.

[S]M. Kim et al., “Synchronized Multi-character Motion
Editing,” ACM Trans. Graph., vol. 28. no. 3, Aug. 2009,
pp- 79:1-79:9.

[6] J. Kim et al, “Interactive Manipulation of Large-Scale
Crowd Animation,” ACM Trans. Graph., vol. 33, no. 4,
July 2014, pp. 83:1-83:10.

[71 H.P.H. Shum, T. Komura, and S. Yamazaki, “Simulating
Multiple Character Interactions with Collaborative and
Adversarial Goals,” IEEE Trans. Vis. Comput. Graph.,
vol. 18, no. 5, May 2012, pp. 741-752.

[8] A. Barnett, H.P.H. Shum, and T. Komura, “Coordinated Crowd
Simulation with Topological Scene Analysis,” J. Comput.
Graph. Forum, vol. 35, no. 6, Oct. 2016, pp. 120-132.

[9] B. Yersin et al, “Crowd Patches: Populating Large-Scale
Virtual Environment for Real-Time Applications,” Proc.
Symp. Interactive 3D Graph. Games, Boston, MA, USA,
Feb. 27-Mar. 1, 2009, pp. 207-214.

501

[10] P. Shirley, M. Ashikhmin, and S. marschner, Fundamentals
of Computer Graphics, 3rd Edition, Boca Raton, FL, USA:
CRC Press, 2009.

[11] S. Leon, Linear Algebra with Applications, 3rd Edition,
London, UK: MacMillan Publishers, 1990.

[12] M. Gleicher, “Motion Path Editing,” Proc. Symp.
Interactive 3D Graph., Triangle Pk, NC, USA, Mar. 19-21,
2001, pp. 195-202.

[13] L. Kovar, J. Schreiner, and M. Gleicher, “FootSkating
Cleanup for Motion Capture Editing,” Proc. ACM
SIGGGRAPH/Eurograph. Symp. Comput. Animation, San
Antonio, TX, USA, July 21-22, 2002, pp. 97-104.

[14] BioVision Hierarchy (BVH) Format, Accessed 2016. http://
www.character-studio.net/bvh_file_specification.htm

Mankyu Sung received his BS degree in

computer science from Chungnam
National University, Daejeon, Rep. of
Korea, in 1993, and his MS and PhD
degrees in computer science from the
University of Wisconsin-Madison, WI,
USA, in 2005. From January 1995 to July
2012, he worked for the Digital Contents Division of the
Institute,

Daejeon, Rep. of Korea. He has been an assistant professor with

Electronics and Telecommunications Research
the Dept. of Game and Mobile Contents, Keimyung University,
Daegu, Rep. of Korea, since March 2012. His current research
interests include computer graphics, computer animation,
computer games, and human-computer interaction. He is a

member of the ACM.

Gyu Sang Choi received his PhD degree
in computer science and engineering from
Pennsylvania State University. He was a
research staff member at the Samsung
Advanced Institute of Technology in
Samsung Electronics, Suwon, Rep. of
Korea, from 2006 to 2009. Since 2009, he
has been with Yeungnam University, Gyeongsan, Rep. of Korea,
where he is currently an assistant professor. His research
interests include embedded systems, storage systems, parallel
and distributed computing, supercomputing, cluster-based Web
servers, and data centers. He is now working on embedded
systems and storage systems, while his prior research has been
mainly focused on improving the performance of clusters. He is
a member of the IEEE and ACM.

http://etrij.etri.re.kr

http://www.character-studio.net/bvh_file_specification.htm
http://www.character-studio.net/bvh_file_specification.htm
http://etrij.etri.re.kr

