DOI QR코드

DOI QR Code

Statistical optimization for lithium silicate catalyzed production of biodiesel from waste cooking oil

  • Cherikkallinmel, Sudha Kochiyil (Department of Chemistry, Sree Neelakanta Government Sanskrit College Pattambi (Affiliated to University of Calicut)) ;
  • Sugunan, Sankaran (Department of Applied Chemistry, Cochin University of Science and Technology) ;
  • Narayanan, Binitha Njarakkattuvalappil (Department of Chemistry, Sree Neelakanta Government Sanskrit College Pattambi (Affiliated to University of Calicut)) ;
  • Faisal, Panichikkal Abdul (Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut) ;
  • Benjamin, Sailas (Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut)
  • Received : 2016.11.28
  • Accepted : 2017.07.02
  • Published : 2017.11.01

Abstract

Lithium silicate is one of the suitable heterogeneous catalysts for biodiesel production. The possibilities of large number of combinations of different reaction parameters make the optimization of biodiesel production process over various heterogeneous catalysts highly tedious, necessitating the development of alternate strategies for parameter optimization. Here, Box-Behnken design (BBD) coupled with response surface methodology (RSM) is employed to optimize the process parameters required for the production of biodiesel from waste cooking oil using lithium silicate as catalyst. Simple method of impregnation was performed for the material preparation and the catalyst was analyzed using different techniques. It was found that the activity is directly proportional to the basicity data obtained from temperature programmed desorption (TPD) of $CO_2$ over various catalyst systems. The material exhibits macroporous morphology and the major crystalline phase of the most active catalyst was found to be $Li_2SiO_3$. The effects of different reaction parameters were studied and a biodiesel yield of 100% was obtained under the predicted optimum reaction conditions of methanol : oil molar ratio 15 : 1, catalyst amount 7 wt%, reaction temperature $55^{\circ}C$ and reaction time 2.5 h. The validation experiments showed a correlation coefficient of 0.95 between the predicted and experimental yield of biodiesel, which indicates the high significance of the model. The fuel properties of biodiesel obtained under the optimum conditions met the specifications as mentioned in ASTM D6751 and EN 14214 standards. Catalyst heterogeneity and low reaction temperature are the major attractions of the present biodiesel preparation strategy.

Keywords

References

  1. M. Ghiaci, B. Aghabarari and A. Gil, Fuel, 90, 3382 (2011). https://doi.org/10.1016/j.fuel.2011.04.008
  2. M. Akia, F. Yazdani, E. Motaee, D. Han and H. Arandiyan, Biofuel Res. J., 1, 16 (2014). https://doi.org/10.18331/BRJ2015.1.1.5
  3. A. K. Endalew, Y. Kiros and R. Zanzi, Biomass Bioenergy, 35, 3787 (2011). https://doi.org/10.1016/j.biombioe.2011.06.011
  4. A. Robles-Medina, P.A. Gonzalez-Moreno, L. Esteban-Cerdan and E. Molina-Grima, Biotechnol. Adv., 27, 398 (2009). https://doi.org/10.1016/j.biotechadv.2008.10.008
  5. M. Mostafaei, B. Ghobadian, M. Barzegar and A. Banakar, Ultrason. Sonochem., 27, 54 (2015). https://doi.org/10.1016/j.ultsonch.2015.04.036
  6. S. Chanatip, K. Surachai, C. Chaiyan, R. Prasert, S. Ruengwit and C. Metta, Arabian J. Chem. (2015), DOI:10.1016/j.arabjc. 2014.12.034.
  7. F.R. Abreu, M. B. Alves and C. C. S. Macedo, J. Mol. Catal. A: Chem., 227, 263 (2005). https://doi.org/10.1016/j.molcata.2004.11.001
  8. G. Vicente, A. Coteron, M. Martinez and J. Aracil, Ind. Crops Products., 8, 29 (1998). https://doi.org/10.1016/S0926-6690(97)10003-6
  9. P. P. Oha, H. L. N. Lau, J. Chen, M. F. Chong and Y. M. Choo, Renewable and Sustainable Energy Reviews, 16, 5131 (2012). https://doi.org/10.1016/j.rser.2012.05.014
  10. R. Chakraborty, S. Bepari and A. Banerjee, Chem. Eng. J., 165, 798 (2010). https://doi.org/10.1016/j.cej.2010.10.019
  11. N. H. Afgan and M.G. Carvalho, Energy, 27, 739 (2002). https://doi.org/10.1016/S0360-5442(02)00019-1
  12. J.M. Encinar, J. F. Gonzalez, E. Sabio and M. J. Ramiro, Ind. Eng. Chem. Res., 38, 2927 (1999). https://doi.org/10.1021/ie990012x
  13. T. Long, Y. Deng, G. Li, S. Gan and J. Chen, Fuel Process. Technol., 92, 1328 (2011). https://doi.org/10.1016/j.fuproc.2011.02.010
  14. A.K. Endalew, Y. Kiros and R. Zanzi, Energy, 36, 2693 (2011). https://doi.org/10.1016/j.energy.2011.02.010
  15. J. H. Ng, H. K. Ng and S. Gan, Clean Technologies Environ. Policy, 12, 459 (2010). https://doi.org/10.1007/s10098-009-0268-6
  16. J. H. Ng, H. K. Ng and S. Gan, Clean Technologies Environ. Policy, 12, 213 (2010). https://doi.org/10.1007/s10098-009-0235-2
  17. J. Zhang, S. Chen, R. Yang and Y. Yan, Fuel, 89, 2939 (2010). https://doi.org/10.1016/j.fuel.2010.05.009
  18. Z. Helwani, M.R. Othman, N. Aziz, J. Kim and W. J.N. Fernando, Appl. Catal. A: Gen., 363, 1 (2009). https://doi.org/10.1016/j.apcata.2009.05.021
  19. A. P.S. Chouhan and A.K. Sarma, Renewable and Sustainable Energy Reviews, 15, 4378 (2011). https://doi.org/10.1016/j.rser.2011.07.112
  20. K. J. Harrington and C. D'Arcy-Evans, Ind. Eng. Chem. Product Res. Development, 24, 314 (1985). https://doi.org/10.1021/i300018a027
  21. J. Graille, P. Lozano, D. Pioch and P. Geneste, Oleagineux, 41, 457 (1986).
  22. E. Akbar, N. Binitha, Z. Yaakob, S.K. Kamarudin and J. Salimon, Green Chem., 11, 1862 (2009). https://doi.org/10.1039/b916263c
  23. M. J. Ramos, A. Casas, L. Rodriguez, R. Romero and A. Perez, Appl. Catal. A: Gen., 346, 79 (2008). https://doi.org/10.1016/j.apcata.2008.05.008
  24. W. Xie, H. Pen and L. Chen, Appl. Catal. A: Gen., 300, 67 (2006). https://doi.org/10.1016/j.apcata.2005.10.048
  25. C. Samart, P. Sreetongkittikul and C. Sookman, Fuel Process. Technol., 90, 922 (2009). https://doi.org/10.1016/j.fuproc.2009.03.017
  26. H. Jeon, D. J. Kim, S. J. Kim and J.H. Kim, Fuel Process. Technol., 116, 325 (2013). https://doi.org/10.1016/j.fuproc.2013.07.013
  27. M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka and J. Hidaka, Fuel, 87, 2798 (2008). https://doi.org/10.1016/j.fuel.2007.10.019
  28. J.X. Wang, K.T. Chen, S.T. Huang, K.T. Chen and C. C. Chen, J. American Oil Chem. Soc., 89, 1619 (2012). https://doi.org/10.1007/s11746-012-2074-2
  29. K.T. Chen, J. X. Wang, Y. M. Dai, P. H. Wang, C.Y. Liou, C.W. Nien, J. S. Wu and C. C. Chen, J. Taiwan Institute Chem. Engineers, 44, 622 (2013). https://doi.org/10.1016/j.jtice.2013.01.006
  30. Y.M. Dai, K.T. Chen, P. H. Wang and C. C. Chen, Adv. Powder Technol., 27, 2432 (2016). https://doi.org/10.1016/j.apt.2016.08.021
  31. J.X. Wang, K.T. Chen, J. S. Wu, P.H. Wang, S.T. Huang and C.C. Chen, Fuel Process. Technol., 104, 167 (2012). https://doi.org/10.1016/j.fuproc.2012.05.009
  32. N. Hindryawati, G. P. Maniam, M.R. Karim and K. F. Chong, Eng. Sci. Technol., Int. J., 17, 95 (2014). https://doi.org/10.1016/j.jestch.2014.04.002
  33. J.X. Wang, K.T. Chen, B. Z. Wen, Y. H. B. Liao and C. C. Chen, J. Taiwan Institute Chem. Engineers, 43, 215 (2012). https://doi.org/10.1016/j.jtice.2011.08.002
  34. Y.M. Dai, J. S. Wu, C. C. Chen and K.T. Chen, Chem. Eng. J., 280, 370 (2015). https://doi.org/10.1016/j.cej.2015.06.045
  35. Y.M. Dai, I. H. Kao and C. C. Chen, J. Taiwan Institute Chem. Engineers, 70, 260 (2016).
  36. Y.M. Dai, J. H. Hsieh and C. C. Chen, J. Chinese Chem. Soc., 61, 803 (2014). https://doi.org/10.1002/jccs.201300563
  37. Y.M. Dai, K.T. Chen and C.C. Chen, Chem. Eng. J., 250, 267 (2014). https://doi.org/10.1016/j.cej.2014.04.031
  38. B. Freedman, R.O. Butterfield and E. H. Pryde, J. American Oil Chem. Soc., 63, 1375 (1986). https://doi.org/10.1007/BF02679606
  39. B. Freedman, E. H. Pryde and T. L. Mounts, J. American Oil Chem. Soc., 61, 1638 (1984). https://doi.org/10.1007/BF02541649
  40. U. Schuchardta, R. Serchelia and R.M. Vargas, J. Brazilian Chem. Soc., 9, 199 (1998).
  41. A.W. Schwab, M.O. Baghy and B. Freedman, Fuel, 66, 1372 (1987). https://doi.org/10.1016/0016-2361(87)90184-0
  42. A. Kawashima, K. Matsubara and K. Honda, Bioresour. Technol., 100, 696 (2009). https://doi.org/10.1016/j.biortech.2008.06.049
  43. C.C.C.M. Silva, N.F.P. Ribeiro, M.M.V.M. Souza and D.A.G. Aranda, Fuel Process. Technol., 91, 205 (2010). https://doi.org/10.1016/j.fuproc.2009.09.019
  44. M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka and J. Hidaka, Fuel, 87, 2798 (2008). https://doi.org/10.1016/j.fuel.2007.10.019
  45. Q. Shu, Q. Zhang, G. H. Xu, Z. Nawaz, D. Z. Wang and J. F. Wang, Fuel Process. Technol., 90, 1002 (2009). https://doi.org/10.1016/j.fuproc.2009.03.007
  46. R. S. Watkins, A. F. Lee and K. Wilson, Green Chem., 6, 335 (2004). https://doi.org/10.1039/B404883K
  47. M.A. Raqeeb and R. Bhargavi, J. Chem. Pharmaceutical Res., 7, 670 (2015).
  48. J. Melero, J. Iglesias and G. Morales, Green Chem., 11, 1285 (2009). https://doi.org/10.1039/b902086a
  49. P.A. Faisal, E. S. Hareesh, P. Priji, K. N. Unni, S. Sajith, S. Sreedevi, M. S. Josh and S. Benjamin, Adv. Enzyme Res., 2, 125 (2014). https://doi.org/10.4236/aer.2014.24013
  50. M. Atapour, H.R. Kariminia and P. M. Moslehabadi, Process Saf. Environ. Prot., 92, 179 (2014). https://doi.org/10.1016/j.psep.2012.12.005
  51. H. Farag, A. El-Maghraby and N. A. Taha, Fuel Process. Technol., 92, 507 (2011). https://doi.org/10.1016/j.fuproc.2010.11.004
  52. M.A. Olutoye and B. H. Hameed, Appl. Catal. A., 450, 57 (2013). https://doi.org/10.1016/j.apcata.2012.09.049
  53. W. Jian-Xun, C. Kung-Tung, W. Jhong-Syuan, W. Po-Hsiang, H. Shiuh-Tsuena and C. Chiing-Chang, Fuel Process. Technol., 104, 167 (2012). https://doi.org/10.1016/j.fuproc.2012.05.009
  54. C. Marcolli and G. Calzaferri, J. Phys. Chem. B., 101, 4925 (1997). https://doi.org/10.1021/jp9707596
  55. E. Rafiee, S. Shahebrahimi, M. Feyzi and M. Shaterzadeh, Inter. Nano Lett., 2, 1 (2012). https://doi.org/10.1186/2228-5326-2-1
  56. D.C. L. Vasconcelos, R.L. Orefice and W.L. Vasconcelos, Mater. Sci. Eng. A., 447, 77 (2007). https://doi.org/10.1016/j.msea.2006.10.006
  57. J. Ortiz-Landerosa, R. Lopez-Juarezb, I. C. Romero-Ibarrac, H. Pfeiffer, H. Balmori-Ramireza and C. Gomez-Yanez, Particuology, 24, 129 (2015).
  58. G. Mondragon-Gutierrez, D. Cruz, H. Pfeiffer and S. Bulbulian, Res. Lett. Mater. Sci. (2008), DOI:10.1155/2008/908654.
  59. X. Li and H. Yang, Cryst. Eng. Commun., 16, 4501 (2014). https://doi.org/10.1039/C4CE00297K
  60. K. F. Hesse, ActaCrystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 33, 901 (1977). https://doi.org/10.1107/S0567740877004932
  61. W. Guang, Y. Zifeng, S. Marianne, Z. Peng and W. Ben, Fuel, 89, 2163 (2010). https://doi.org/10.1016/j.fuel.2010.02.016
  62. Y. Liu, T. Liu, X. Wang, L. Xu and Y. Yan, Energy Fuels, 25, 1206 (2011). https://doi.org/10.1021/ef200066x
  63. W. Boyang, L. Shufen, T. Songjian, F. Rihua and M. Yonglu, Fuel, 104, 698 (2013). https://doi.org/10.1016/j.fuel.2012.08.034
  64. H. Hamze, M. Akiaa and F. Yazdani, Process Safety Environ. Protection, 94, 1 (2015). https://doi.org/10.1016/j.psep.2014.12.005
  65. S. Benjapornkulaphong, C. Ngamcharussrivichai and K. Bunyakiat, Chem. Eng. J., 145, 468 (2009). https://doi.org/10.1016/j.cej.2008.04.036
  66. H.V. Lee, R. Yunus, J. C. Juan and Y. H. Taufiq-Yap, Fuel Process. Technol., 92, 2420 (2011). https://doi.org/10.1016/j.fuproc.2011.08.018
  67. W.N.N.W. Omar and N. A. S. Amin, Biomass Bioenergy, 35, 1329 (2011). https://doi.org/10.1016/j.biombioe.2010.12.049
  68. J. Kansedo, K.T. Lee and S. Bhatia, Biomass Bioenergy, 33, 271 (2009). https://doi.org/10.1016/j.biombioe.2008.05.011
  69. J. Kansedo and K.T. Lee, Chem. Eng. J., 214, 157 (2013). https://doi.org/10.1016/j.cej.2012.10.048
  70. M. Zabeti, W. M. A.W. Daud and M. K Aroua, Appl. Catal. A: Gen., 366, 154 (2009). https://doi.org/10.1016/j.apcata.2009.06.047
  71. S. L. Martineza, R. Romeroa, R. Natividad and J. Gonzalez, Catal. Today, 220, 12 (2014).
  72. E. Rashtizadeh, F. Farzaneh and Z. Talebpour, Bioresour. Technol., 154, 32 (2014). https://doi.org/10.1016/j.biortech.2013.12.014

Cited by

  1. Optimization of parameters for the production of biodiesel from rubber seed oil using onsite lipase by response surface methodology vol.8, pp.11, 2017, https://doi.org/10.1007/s13205-018-1477-7
  2. Preparation, characterization and application of ordered mesoporous sulfated zirconia vol.45, pp.3, 2017, https://doi.org/10.1007/s11164-018-3667-7
  3. In-Situ Catalytic Fast Pyrolysis of Pinecone over HY Catalysts vol.9, pp.12, 2017, https://doi.org/10.3390/catal9121034
  4. Purification technology for renewable production of fuel from methanolysis of waste sunflower oil in the presence of high silica zeolite beta vol.14, pp.1, 2021, https://doi.org/10.1080/17518253.2020.1856426