심전도 기저선 흔들림 잡음 제거를 위한 적응형 필터 설계

Adaptive Filter Design for Eliminating Baseline Wandering Noise of Electrocardiogram

  • 최철형 (공주대학교 전기전자제어공학과) ;
  • 세이푸르 (공주대학교 전기전자제어공학과) ;
  • 김시경 (공주대학교 전기전자제어공학과) ;
  • 박인덕 (대덕대학교 전기과) ;
  • 김영필 (공주대학교 전기전자제어공학과)
  • 투고 : 2017.11.09
  • 심사 : 2017.12.02
  • 발행 : 2017.12.31

초록

모바일 심전도(ECG) 신호 측정은 수 mV의 작은 소 신호를 측정하는 기술로서 동적 잡음을 제거하기 위한 많은 연구가 진행 되어 왔다. 특히 심전도 전극 케이블의 흔들림이나 피부의 움직임으로 인하여 유발 되는 등 전위선 잡음의 제거는 심전도 측정을 위한 핵심 연구 내용 중 하나이다. 본 연구에서는 심전도 신호의 등전위선 동적 잡음을 제거하기 위해 정규화 최소 자승법(NLMS)와 지연 최소 자승법(DLMS) 방식을 결합한 적응 필터의 스텝 사이즈를 결정하여 적용하는 기법을 제안 하였다. 제안한 기법은 필터의 초기 스텝 사이즈를 조정하여 기본 노이즈를 차감 한 후, 해당 과정에서 발생할 수 있는 심전도 신호 특성의 왜곡을 줄이는 방법이다. 본 논문에서의 제안한 기법에서, 필터 계수의 값은 필터 순서 사이즈 및 왜곡 최소화 인자에 의해 직접적으로 스케일링 설정 된다. 그리고 제안된 필터는 실시간 필터링에 필수적인 계산의 복잡성을 줄이도록 하여, 연산시간을 줄일 수 있을 것으로 기대되므로 소형 프로세서 및 저전력 소비가 요구되는 모바일 심전도 측정기기에 적합한 장점을 가진다. 또한 종래의 NLMS 적응 필터와 신호대잡음비(SNR)를 비교하여 우수함을 확인하였다.

Mobile ECG signal measurement is a technique to measure small signals of several mV, and many studies have been conducted to remove noise including wandering scheme. Removal of the equipotential line noise caused by shaking or movement of the electrode cable is one of the core research contents for the electrocardiogram measurement. In this study, we proposed a modified step-size of combined NLMS(normalized least squares) and DLMS(delayed least squares) adaptive filter to eliminate baseline noise from ECG signals. The proposed method mainly adjusts initial filter step-size to reduce distortion of original ECG signals characteristic after eliminating baseline noise. The modified filter step-size is scaled by filter order size and distortion minimization factor. This method is suitable for portable ECG device with a small processor and less power consumption. This technique also decreases computation time which is essential for real-time filtering. The proposed filter also increase the signal to noise ratio (SNR) compared to conventional NLMS filter.

키워드

참고문헌

  1. Rizwan Qureshi, Muhammad Uzair, and Khurram Khurshid, "Multistage Adaptive filter for ECG signal processing", 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), pp. 363-368, Mar. 2017.
  2. Yushun Gong and Peng Gao, "An Enhanced Adaptive Filtering Method for Suppressing Cardiopulmonary Resuscitation Artifact", IEEE Transactions on Biomedical Engineering, Vol. 64, No. 2, pp. 471-478, Feb. 2017. https://doi.org/10.1109/TBME.2016.2564642
  3. Nauman Razzaq and Shafa-At Ali Sheikh, "An Intelligent Adaptive Filter for Elimination of Power Line Interference From High Resolution Electrocardiogram", IEEE Access, Vol. 4, pp. 1676-1688, Mar. 2016. https://doi.org/10.1109/ACCESS.2016.2548362
  4. Tom Torfs and Yun-Hsuan Chen, "Noncontact ECG Recording System With Real Time Capacitance Measurement for Motion Artifact Reduction", IEEE Transactions on Biomedical Circuits and Systems, Vol. 8, No. 5, pp. 617-625, Oct. 2014. https://doi.org/10.1109/TBCAS.2014.2359053
  5. Z. Wei, L. Hongxing, and C. Jianchun, "Adaptive filtering in phase space for foetal electrocardiogram estimation from an abdominal electrocardiogram signal and a thoracic electrocardiogram signal", IET Signal Processing, Vol. 6, No. 3, pp. 171-177, May 2012. https://doi.org/10.1049/iet-spr.2010.0263
  6. Muhammad Zia Ur Rahman, Rafi Ahamed Shaik, and D. V. Rama Koti Reddy, "Efficient and Simplified Adaptive Noise Cancelers for ECG Sensor Based Remote Health Monitoring", IEEE Sensors Journal, Vol. 12, No. 3, pp. 566-573, Feb. 2011.
  7. T. Stamkopoulos, K. Diamantaras, N. Maglaveras, and M. Strintzis, "ECG analysis using nonlinear PCA neural networks for ischemia detection", IEEE Transactions on Signal Processing, Vol. 46, No. 11, pp. 3058-3067, Nov. 1998. https://doi.org/10.1109/78.726818
  8. N. V. Thakor and Y. S. Zhu, "Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection", IEEE Trans. Biomedical Engineering, Vol. 38, No. 8, pp. 785-794, Aug. 1991. https://doi.org/10.1109/10.83591
  9. P. Laguna, R. Jane, and O. Meste, et al., "Adaptive filters for eventrelated bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques", IEEE Transactions on Biomedical Engineering, Vol. 39, No. 10, pp. 1032-1044, Oct. 1992. https://doi.org/10.1109/10.161335
  10. G. B. Moody and R. G. Mark, "QRS morphology representation and noise estimation using the Karhunen-Loeve transform", in Proceedings of Computers in Cardiology, Jerusalem, Israel, pp. 269-272, Sep. 1989.
  11. A. K. Barros, A. Mansour, and N. Ohnishi, "Removing artifacts from electrocardiographic signals using independent components analysis", Neurocomputing, Vol. 22, No. 1-3, pp. 173-186, Nov. 1998. https://doi.org/10.1016/S0925-2312(98)00056-3
  12. T. He, G. D. Clifford, and L. Tarassenko, "Application of ICA in removing artefacts from the ECG", to appear in Neural Processing Letters, pp. 1-18, Nov. 2005.
  13. G. D. Clifford and L. Tarassenko, "One-pass training of optimal architecture auto-associative neural network for detecting ectopic beats", Electronics Letters, Vol. 37, No. 18, pp. 1126-1127, Aug. 2001. https://doi.org/10.1049/el:20010762
  14. R. Silipo and C. Marchesi, "Artificial neural networks for automatic ECG analysis", IEEE Trans. Signal Processing, Vol. 46, No. 5, pp. 1417-1425, May 1998. https://doi.org/10.1109/78.668803
  15. W. Hao, Y. Chen, and Y. Xin, "ECG baseline wander correction by meanmedian filter and discrete wavelet transform", IEEE Eng. Med. Biol. Soc., pp. 2712-2715, Aug. 2011.
  16. Seok-Joo Yoon, Gwang-Jun Kim, and Chang-Soo Jang, "Individual Identification of Electrocardiogram using Discrete Wavelet Transform", Journal of Korean Institute Information Technology, Vol. 10, No. 8, pp. 181-187, Aug. 2012.
  17. J. A. Van Alste, W. Van Eck, and O. E. Herrmann, "ECG baseline wander reduction using linear phase filters", Computers and Biomedical Research, Vol. 19, No. 5, pp. 417-427, Oct. 1986. https://doi.org/10.1016/0010-4809(86)90037-6
  18. G. Long, F. Ling, and J. A. Proakis, "The LMS algorithm with delayed coefficient adaptation", IEEE Tran. Acoust., Speech, Signal Processing, Vol. 37, No. 9, pp. 1397-1405, Sep. 1989. https://doi.org/10.1109/29.31293
  19. M. Rupp and R. Frenzel, "Analysis of LMS and NLMS algorithms with Delayed Coefficient Update Under the Presence of Spherically Invariant Processes", IEEE. Tran. Signal Processing, Vol. 42, No. 3, pp. 668-672, Mar. 1994. https://doi.org/10.1109/78.277860
  20. P. Somjai, P. Chumchu, and T. Demeechai, "Delayed adaptive filtering based on NLMS algorithm with an error adjustment procedure", IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No. 98EX242), Nov. 1998.