DOI QR코드

DOI QR Code

웰니스 의류에 적용 가능한 바이오센서 동향 연구

A Review Study of Biosensors applicable to Wellness Wear

  • 김효진 (한국생산기술연구원 스마트섬유그룹)
  • Kim, Hyo-Jin (Smart Textile R&D Group, Korea Institute of Industrial Technology (KITECH))
  • 투고 : 2017.09.27
  • 심사 : 2017.11.20
  • 발행 : 2017.11.28

초록

본 논문은 전기적 감지 방식 바이오센서의 개념을 리뷰하고, 의류 및 텍스트 기반의 바이오센서의 연구 사례를 조사하였다. 생체 신호를 측정 할 수 있는 바이오센서는 생물학적 감지 물질을 이용하여 생물학적 물질의 물리적, 화학적 특성을 감지하는 장치이다. 따라서 바이오센서를 사용하여 생체신호를 측정할 수 있는 웰니스 의류는 U-Health 서비스를 제공하는데 중요한 역할을 한다. 기존 센서와 다르게 바이오센서의 차별화된 특징은 선택적 반응과 생물학적 물질의 결합을 사용한다는 점이다. 이러한 바이오센서 중 전기적 감지 바이오센서는 전기 신호의 처리로 인해 크기가 매우 작아 유비쿼터스 환경을 조성하는데 이용될 수 있다. 따라서 웰니스 의류를 개발하기 위해 소형화가 쉬운 전기적 감지 바이오센서를 연구할 필요가 있다. 본 논문에서는 전기적 감지 바이오센서(전기화학적 방식, 나노와이어/탄소나노튜브 기반 FET 방식)에 대해 자세히 기술하였다. 마지막으로, 이러한 고찰을 통해 향후 웰니스 의류에 적용 가능할 바이오센서의 기술개발 방향을 제언하였다.

This paper provides a review of the electrical sensing biosensors and examine research cases of biosensors based on clothing and textiels. A biosensor which can measure bio-signals is a device that senses the physical and chemical characteristics of biological materials by using biological sensing materials. Therefore, wellness wear that is closely integrated with the user's real life will play an important role in achieving U-Health. The biosensors' unique feature which can be differentiated from the existing sensors is it's using of selective reactions and binding of biological substances. The electrical sensing biosensors are very small in size due to the processing of electrical signals, which can be used to create ubiquitous. Therefore, it is necessary to study electrical sensing biosensors that are easy to miniaturize to develop wellness wear. This paper describes the electrical sensing biosensor (an electrochemical method nanowire/carbon nanotube FET method) in detail. Finally, the future direction of biosensors to be applied to wellness wear is suggested.

키워드

참고문헌

  1. L. S. Lee, S. H. Lee & J. S. Jeong, "Psychological Factors Influencing Continuous Use of Mobile Healthcare Applications", Journal of Digital Convergence, Vol. 15, No. 7, pp.445-456, 2017. DOI: https://doi.org/10.14400/JDC.2017.15.7.445
  2. J. S. Jang, S. J. Lee, K. I. Lee & T. R. Lee, "Design and Implementation of a Cardiac Arrest Supporting System Using Wearable Device", Journal of Digital Convergence, Vol. 15, No. 1, pp.227-238, 2017. DOI: https://doi.org/10.14400/JDC.2017.15.1.227
  3. J. Yoo, "A Study on Implementation of System Improvement for Medical Information Processing", Journal of Digital Convergence, Vol. 14, No. 11, pp.283-288, 2016. DOI: http://dx.doi.org/10.14400/DC.2016.14.11.283
  4. D. H. Yun, M. J. Song, J. H. Kim, M. S. Kang, N. K. Min & S. I. Hong, "Electrochemical characterization of 3-mercaptopropionic acid self-assembled monolayer for urea sensor", Proceedings of the Korean Institute of Electrical Engineers, Summer Conference, pp.14-16, 2004.
  5. S. K. Kim & B. H. Chung, "Electrochemical Biosensors for U-Healthcare", J. Biomed. Eng. Res., Vol. 29, No. 5, pp.337-342, 2008.
  6. K. S. Hwang, S. K. Kim & T. S. Kim, "Biosensors: a review", J. Kor. Sensors Soc, Vol. 18, No. 4, 2009. pp.251-262. DOI: http://doi.org/10.5369/jsst.2009.18..251
  7. Y. H. Yun, S. Hur & S. C. Lee, "Nano-Bio Sensor Technology and Characteristics", Journal of the Korean Society for Precision Engineering, Vol. 25, No. 11, pp.7-14, 2008.
  8. D. N. Stratis-Cullum, & A. S. Finch, "Current trends in ubiquitous biosensing". J. Anal. Bioanal. Tech., Vol. S7, 2013. DOI: http://doi.org/10.4172/155-9872.S7-009
  9. S. Park & J. Yang, "Recent research trends on Bio-MEMS" J. of the Korean Sensor Society, Vol. 19, No. 4, pp.259-270, 2010. DOI: http://doi.org/10.369/jsst.2010.19.4.259
  10. G. Y. Sung, C. W. Park, K. H. Kim & J. H. Yang, "Recent Technology Trend of the Biosensors for the Ubiquitous Health-Care", Electronics and Telecommunications Trends, Vol. 24, No. 5, pp.38-51, 2009.
  11. J. Y. Kang & T. S. Kim, "Research trend of nanobio sensor/chip", Bulletin of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 17, No. 4, pp.5-15, 2004.
  12. Y. Son, "Biosensor Trends", Bulletin of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 24, No. 1, pp.9-16, 2011.
  13. T. J. Kim, "Biosensor", Korean J. Biotechnol. Bioeng., Vol. 22, No. 6, pp.421-425, 2007.
  14. O. S. Kwon, "Nanobiosensors Based on Field-Effect Transistor", Polymer Science and Technology, Vol. 26, No. 4, pp.323-328, 2015.
  15. S. J. Sim & J. P. Kim, "Biosensor Technology Based on Carbon Nanotubes Using Electrical Detectio",. Korean Industrial Chemistry News, Vol. 14, No. 1, pp.31-40, 2011.
  16. Y. S. Son, "Field Effect Transistors for Biomedical Application", Applied Chemistry for Engineering, Vol. 24, No. 1, pp.1-9, 2013.
  17. E. C. Lee, "Development of field-effect transistor-based biosensor", Bulletin of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 22, No. 5, pp.38-45, 2009.
  18. C. J. Choi, "Research Trends of Nanobiosensors", Ceramist, Vol. 14, No. 4, pp.44-49, 2011.
  19. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, & C. M. Lieber "Growth of nanowire superlattice structures for nanoscale photonics and electronics", Nature, Vol. 415, No. 6872, pp.617-620, 2002. DOI: http://doi.org/10.1038/415617a
  20. S. C. Hernandez, D. Chaudhuri, W. Chen, N. V. Myung, & A. Mulchandani, "Single polypyrrole nanowire ammonia gas sensor", Electroanalysis, Vol. 19, No. 19-20, pp.2125-2130, 2007. DOI: http://doi.org/10.1002/elan.200703933
  21. S. Kang, B. Choi, K. Kim, J. Choi & S. Oh, "Potable Nanobiosensors", pp.16-17, Korea Institute of Science and Technology Information, 2016.
  22. J. W. Choi, B. G. Oh & S. M. Oh. "Technical analysis and research trend of nano-biosensor", Bulletin of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 20, No. 10, pp.3-13, 2007.
  23. B. Cho, B. Lim, J. K. Shin, S. W. Choi & H. S. Chun, "Fabrication of the CNT-FET biosensors with a double-gate structure", J. of the Korean Sensors Society, Vol. 18, No. 2, pp.168-172, 2009. DOI: http://doi.org/10.5369/jsst.2009.18.2.168
  24. V. Derycke, R. Martel, J. Appenzeller & P. Avouris, "Controlling doping and carrier injection in carbon nanotube transistors", Applied Physics Letters, Vol. 80, No. 15, pp.2773-2775, 2002. DOI: http://doi.org/10.1063/1.1467702
  25. R. S. Malon, K. Y. Chua, D. H. Wicaksono & E. P. Corcoles, "Cotton fabric-based electrochemical device for lactate measurement in saliva", Analyst, Vol. 139, No. 12, pp.3009-301, 2014. DOI: https://doi.org/10.1039/c4an00201f
  26. T. Seesaard, P. Lorwongtragool, & T. Kerdcharoen, "Development of fabric-based chemical gas sensors for use as wearable electronic noses", Sensors, Vol. 15, No. 1, pp.1885-1902, 2015. DOI: https://doi.org/10.3390/s150101885
  27. Y. L. Yang, M. C. Chuang, S. L. Lou, & J. Wang, "Thick-film textile-based amperometric sensors and biosensors", Analyst, Vol. 135, No. 6, pp.1230-1234, 2010. DOI: https://doi.org/10.1039/926339j
  28. T. Guinovart, M. Parrilla, G. A. Crespo, F. X. Rius & F. J. Andrade, "Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes", Analyst, Vol. 138, No. 18, pp.5208-5215, 2013. DOI: https://doi.org/10.1039/3an00710c
  29. T. Choudhary, G. P. Rajamanickam & D. Dendukuri,."Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors", Lab on a Chip, Vol. 15, No. 9, pp.2064-2072, 2015. DOI: https://doi.org/0.1039/c5lc00041f https://doi.org/10.1039/c5lc00041f
  30. E. K. Wujcik, N. J. Blasdel, D. Trowbridge & C. N. Monty, "Ion sensor for the quantification of sodium in sweat samples", IEEE Sensors Journal, Vol. 13, No. 9, pp.3430-3436, 2013. DOI: https://doi.org/10.1109/jsen.2013.2257168