DOI QR코드

DOI QR Code

The Design of LLC-typed Resonant Converter with Ga-N HEMT PFC and SR method for Electric Vehicle

Ga-N HEMT PFC 및 SR기법이 적용된 전기자동차용 LLC 공진형컨버터의 설계

  • 유동주 (아주자동차대학 자동차계열) ;
  • 전지용 (아주자동차대학 자동차계열)
  • Received : 2017.09.12
  • Accepted : 2017.11.20
  • Published : 2017.11.28

Abstract

In this paper, we present a design technique that miniaturises the DC-DC converter, a key component in the electric vehicle system, using the advanced material (Ga-N HEMT) in the LLC resonant converter and freely changes the resonant frequency. This design is also proposed to improve the efficiency and temperature characteristics by adding SR Topology in the secondary side output during the operation of power supply. In this experiment, as a consequence of the constructed circuit with the operation of high switching frequency of 200 kHz, the size of LLC and PFC was able to be minimised by 40[%]. Thus, the characteristics of operating temperature demonstrated $60-65^{\circ}C$ without a heat sink, when the temperature was measured at 250W (12V/20A). The features were all due to the advantages of the change of switching frequency, switching circuits implementation, and the maximisation of switching frequency. Based on these design results, we would like to implement more than 1 [kW].

본 논문에서는 전기자동차의 핵심부품인 DC-DC 컨버터를 LLC공진형 컨버터에 신소재(Ga-N HEMT)를 이용하여 설계함으로써 소형화가 가능하며, 공진주파수를 자유롭게 변경할 수 있으며, 2차측 출력부에 SR Topology를 추가하여 전원장치의 동작 시 효율 및 온도특성을 개선하는 설계기법을 제안하였다. 이를 통해 고효율과 소형화를 얻을 수 있도록 회로를 구성하였으며, 제안된 컨버터는 200[kHz]의 높은 스위칭주파수를 가지고 동작시키게 됨으로써 스위칭주파수의 변화 및 회로구현의 장점과 스위칭주파수의 극대화로 인해서 LLC 및 PFC의 사이즈를 40[%] 최소화 할 수 있었으며, 동작온도의 특성이 250W(12V/20A)에서 온도를 측정한 결과 방열판 없이 $60{\sim}65^{\circ}C$를 나타냄을 확인하였다. 이러한 설계결과를 토대로 향후 1[kW]이상까지 구현하고자 한다.

Keywords

References

  1. UMESH K. MISHRA, FELLOW, IEEE, PRIMIT PARIKH, AND YI-FENG WU, "AlGaN/GaN HEMTs-An Overview of Device Operation and Applications", Proceedings of The IEEE, Vol. 90, No. 6, 2002.
  2. S. J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, "Fabrication and performance of GaN electronic devices", Materials Science and Engineering, R30 pp. 55-212, 2000.
  3. H. G. Bae, R. Negra, S. Boumaiza, and F. Ghannouchi, "High-efficiency GaN class-E power amplifier with compact harmonic-suppression network", Microwave Conference, 2007. European, pp. 1093-1096, 2007.
  4. N.-Q. Zhang, B.Moran, S.P. DenBaars, U.K. Mishra, X.W.Wang and T.P.Ma, "Effects of surface traps on breakdown voltage and switching speed of GaN power switching HEMTs", Electron Devices Meetings, IEDM Tech.Digest. pp.25.5.1-25.5.4, 2001.
  5. Naiqian Zhang, Vivek Mehrotra, Sriram Chandrasekaran, Brendan Moran, Likun Shen, Umesh, Mishra, Edward Etzkorn and David Clarke, "Large Area GaN HEMT Power Devices for Power Electronic Applications: Switching and Temperature Characteristics", IEEE Trans. Electron Device, pp. 233-237. 2003.
  6. H. Xu, S. Gao, S. Heikman, S. I. Long, U. K. Mishra,and R. A. York, "A high-efficiency class-E GaN HEMT power amplifier at 1.9 GHz", IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 1, pp. 22-24, 2006. https://doi.org/10.1109/LMWC.2005.861355
  7. Wataru Saito, Yoshiharu Takada, Masahiko Kuraguchi, Kunio Tsuda, Ichiro Omura, Tsuneo Ogura, and Hiromichi Ohashi, "High Breakdown Voltage AlGaN-GaN Power-HEMT Design and High Current Density Switching Behavior", IEEE Trans. Electron Device, Vol. 50, No. 12, 2003
  8. Wataru Saito, Masahiko Kuraguchi, Yoshiharu Takada, Kunio Tsuda, Ichiro Omura, and Tsuneo Ogura, "High Breakdown Voltage Undoped AlGaN-GaN Power HEMT on Sapphire Substrate and Its Demonstration for DC-DC Converter Application", IEEE Trans. Electron Device, Vol. 51, No. 11, 2004.
  9. F. H. Raab, "Maximum efficiency and output of class-F power amplifiers", IEEE Trans. Microw. Theory Tech., Vol. 49, No. 6, pp. 1162-1166, 2001. https://doi.org/10.1109/22.925511
  10. Wataru Saito, Masahiko Kuraguchi, Yoshiharu Takada, Kunio Tsuda and Ichiro Omura, "Design Optimization of High Breakdown Voltage AlGaN-GaN Power HEMT on an Insulating Substrate for RONA-VB Tradeoff Characteristics", IEEE Trans. Electron Device, Vol. 52, No. 1, 2005.
  11. M. van der Heijden, M. Acar, and J. Vromans, "A compact 12-watt high-efficiency 2.1-2.7 GHz class-E GaN HEMT power amplifier for base stations", in IEEE MTTS Int. Microw. Symp. Dig., pp. 657-660, 2009.
  12. Y. Y. Woo, Y. Yang, and B. Kim, "Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers", IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, pp. 1969-1974, 2006. https://doi.org/10.1109/TMTT.2006.872805
  13. P. Colantonio, A. Ferrero, F. Giannini, E. Limiti, and V. Teppati, "An approach to harmonic load-pull and source-pull measurements for high efficiency PA design", IEEE Trans. Microw. Theory Tech., Vol. 52, No. 1, pp. 191-198, 2004. https://doi.org/10.1109/TMTT.2003.821276
  14. http://www.onsemi.com/PowerSolutions/evalBoard.do?id=NC
  15. http://www.transphormusa.com/document/characteristics-transphorm-gan-power-fets/
  16. http://www.transphormusa.com/document/600vcascode-gan-fet-tph3202p/, 2014
  17. http://www.transphormusa.com/document/drainvoltage-avalanche-ratings-gan-fets/. 2017