References
- Ayaz, B., Ugur, A. and Boran, R. 2015. Purification and characterization of organic solvent-tolerant lipase from Streptomyces sp. OC119-7 for biodiesel production. Biocatal. Agric. Biotechnol. 4, 103-108.
- Cao, Y., Wu, S., Li, J., Wu, B. and He, B. 2014. Highly efficient resolution of mandelic acid using lipase from Pseudomonas stutzeri LC2-8 and a molecular modeling approach to rationalize its enantioselectivity. J. Mol. Catal. B-Enzym. 99, 108-113. https://doi.org/10.1016/j.molcatb.2013.10.026
- Chakravorty, D., Parameswaran, S., Dubey, V. K. and Patra, S. 2012. Unraveling the rationale behind organic solvent stability of lipases. Appl. Biochem. Biotechnol. 167, 439-461. https://doi.org/10.1007/s12010-012-9669-9
- Cruden, D. L., Wolfram, J. H., Rogers, R. T. and Gibson, D. T. 1992. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl. Environ. Microbiol. 58, 2723-2729.
- De Bont, J. A. 1998. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol. 16, 493-499. https://doi.org/10.1016/S0167-7799(98)01234-7
- Doukyu, N. and Ogino, H. 2010. Organic solvent-tolerant enzymes. Biochem. Eng. J. 48, 270-282. https://doi.org/10.1016/j.bej.2009.09.009
- Dror, A., Shemesh, E., Dayan, N. and Fishman, A. 2014. Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Appl. Environ. Microbiol. 80, 1515-1527. https://doi.org/10.1128/AEM.03371-13
- Ganasen, M., Yaacob, N., Rahman, R. N., Leow, A. T., Basri, M., Salleh, A. B. and Ali, M. S. 2016. Cold-adapted organic solvent tolerant alkalophilic family I. 3 lipase from an Antarctic Pseudomonas. Int. J. Biol. Macromol. 92, 1266-1276. https://doi.org/10.1016/j.ijbiomac.2016.06.095
- Hartmans, S., van der Werf, M. J. and de Bont, J. A. 1990. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56, 1347-1351.
- Hun, C. J., Rahman, R. N., Salleh, A. B. and Basri, M. 2003. A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem. Eng. J. 15, 147-151. https://doi.org/10.1016/S1369-703X(02)00185-7
- Inoue, A. and Horikoshi, K. 1989. A Pseudomonas thrives in high concentrations of toluene. Nature 338, 264-266. https://doi.org/10.1038/338264a0
- Jain, D. and Mishra, S. 2015. Multifunctional solvent stable Bacillus lipase mediated biotransformations in the context of food and fuel. J. Mol. Catal. B-Enzym. 117, 21-30. https://doi.org/10.1016/j.molcatb.2015.04.002
- Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A. and Nadeem, H. 2017. Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol. http://dx.doi.org/10.1016/j.pbiomolbio.2017.07.014
- Kawata, T. and Ogino, H. 2010. Amino acid residues involved in organic solvent-stability of the LST-03 lipase. Biochem. Biophys. Res. Commun. 400, 384-388. https://doi.org/10.1016/j.bbrc.2010.08.080
- Kumar, A., Dhar, K., Kanwar, S. S. and Arora, P. K. 2016. Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18, 2. https://doi.org/10.1186/s12575-016-0033-2
- Li, X., Qian, P., Wu, S. G. and Yu, H. Y. 2014. Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles 18, 171-178. https://doi.org/10.1007/s00792-013-0610-0
- Li, M., Yang, L. R., Xu, G. and Wu, J. P. 2016. Cloning and characterization of a novel lipase from Stenotrophomonas maltophilia GS11: the first member of a new bacterial lipase family XVI. J. Biotechnol. 228, 30-36. https://doi.org/10.1016/j.jbiotec.2016.04.034
- Liu, G., Hu, S., Li, L. and Hou, Y. 2015. Purification and Characterization of a Lipase with High Thermostability and Polar Organic Solvent-Tolerance from Aspergillus niger AN0512. Lipids 50, 1155-1163. https://doi.org/10.1007/s11745-015-4052-6
- Maharana, A. and Ray, P. 2015. A novel cold-active lipase from psychrotolerant Pseudomonas sp. AKM-L5 showed organic solvent resistant and suitable for detergent formulation. J. Mol. Catal. B-Enzym. 120, 173-178. https://doi.org/10.1016/j.molcatb.2015.07.005
- Martinez, P. and Arnold, F. H. 1991. Surface charge substitutions increase the stability of alphalytic protease in organic solvents. J. Am. Chem. Soc. 113, 6336-6337. https://doi.org/10.1021/ja00016a096
- Na, K. S., Kuroda, A., Takiguchi, N., Ikeda, T., Ohtake, H. and Kato, J. 2005. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J. Biosci. Bioeng. 99, 378-382. https://doi.org/10.1263/jbb.99.378
- Ogino, H. and Ishikawa, H. 2001. Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng. 91, 109-116. https://doi.org/10.1016/S1389-1723(01)80051-7
- Ogino, H., Miyamoto, K. and Ishikawa, H. 1994. Organicsolvent-tolerant bacterium which secretes organic-solventstable lipolytic enzyme. Appl. Environ. Microbiol. 60, 3884-3886.
- Ogino, H., Yasui, K., Shiotani, T., Ishihara, T. and Ishikawa, H. 1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol. 61, 4258-4262.
- Patel, V., Nambiar, S. and Madamwar, D. 2014. An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment. Process Biochem. 49, 1673-1681. https://doi.org/10.1016/j.procbio.2014.06.007
- Ramos, J. L., Duque, E., Huertas, M. J. and Haidour, A. 1995. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol. 177, 3911-3916. https://doi.org/10.1128/jb.177.14.3911-3916.1995
- Salihu, A. and Alam, M. Z. 2015. Solvent tolerant lipases: a review. Process Biochem. 50, 86-96. https://doi.org/10.1016/j.procbio.2014.10.019
- Sharma, S. and Kanwar, S. S. 2014. Organic solvent tolerant lipases and applications. The Scientific World Jo.
- Singh, M. K., Singh, J., Kumar, M. and Thakur, I. S. 2014. Novel lipase from basidiomycetes Schizophyllum commune ISTL04, produced by solid state fermentation of Leucaena leucocephala seeds. J. Mol. Catal. B-Enzym. 110, 92-99. https://doi.org/10.1016/j.molcatb.2014.10.010
- Sivaramakrishnan, R. and Incharoensakdi, A. 2016. Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil. J. Biosci. Bioeng. 121, 517-522. https://doi.org/10.1016/j.jbiosc.2015.09.005
- Souza, L. T. A., Oliveira, J. S., dos Santos, V. L., Regis, W. C., Santoro, M. M. and Resende, R. R. 2014. Lipolytic potential of Aspergillus japonicus LAB01: production, partial purification, and characterisation of an extracellular lipase. BioMed Res. Int. 2014, 108913.
- Su, H., Mai, Z., Yang, J., Xiao, Y., Tian, X. and Zhang, S. 2016. Cloning, expression, and characterization of a coldactive and organic solvent-tolerant lipase from Aeromicrobium sp. SCSIO 25071. J. Microbiol. Biotechnol. 26, 1067-1076. https://doi.org/10.4014/jmb.1511.11068
- Torres, S., Pandey, A. and Castro, G. R. 2011. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol. Adv. 29, 442-452. https://doi.org/10.1016/j.biotechadv.2011.04.002
- Weber, F. J., Ooijkaas, L. P., Schemen, R. M., Hartmans, S. and de Bont, J. A. 1993. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microbiol. 59, 3502-3504.
- Yang, W., He, Y., Xu, L., Zhang, H. and Yan, Y. 2016. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. J. Mol. Catal. B-Enzym. 126, 76-89. https://doi.org/10.1016/j.molcatb.2016.02.005