DOI QR코드

DOI QR Code

Solvent-tolerant Lipases and Their Potential Uses

유기용매 내성 리파아제와 그 이용가능성

  • Joo, Woo Hong (Department of Biology and Chemistry, Changwon National University)
  • 주우홍 (창원대학교 생물학화학융합학부)
  • Received : 2017.10.31
  • Accepted : 2017.11.28
  • Published : 2017.11.30

Abstract

This review described solvent-tolerant lipases and their potential industrial, biotechnological and environmental impacts. Although organic solvent-tolerant lipase was first reported in organic solvent-tolerant bacterium, many organic solvent-tolerant lipases are in not only solvent-tolerant bacteria but also solvent-intolerant bacterial and fungal strains, such as the well-known Bacillus, Pseudomonas, Streptomyces and Aspergillus strains. As these lipases are not easily inactivated in organic solvents, there is no need to immobilize them in order to prevent an enzyme inactivation by solvents. Therefore, the solvent-tolerant lipases have the potential to be used in many biotechnological and biotransformation processes. With the solvent-tolerant lipases, a large number insoluble substrates become soluble, various chemical reactions that are initially impossible in water systems become practical, synthesis reactions (instead of hydrolysis) are possible, side reactions caused by water are suppressed, and the possibility of chemoselective, regioselective and enantioselective transformations in solvent and non-aqueous systems is increased. Furthermore, the recovery and reuse of enzymes is possible without immobilization, and the stabilities of the lipases improve in solvent and non-aqueous systems. Therefore, lipases with organic-solvent tolerances have attracted much attention in regards to applying them as biocatalysts to biotransformation processes using solvent and non-aqueous systems.

본 총설에서는 유기용매 내성 리파아제와 그들의 산업, 생물공학 및 환경에서의 잠재적인 영향에 대하여 서술하고자 한다. 유기용매 내성 리파아제는 유기용매 내성 세균에서 처음 보고되었으나, 많은 유기용매 내성 리파아제들이 유기용매 내성 세균 뿐만 아니라 잘 알려진 Bacillus, Pseudomonas, Streptomyce 그리고 Aspergillus sp. 균주 같은 유기용매 비내성 세균 그리고 균류 균주들에서도 보고되고 있다. 이들 리파아제들은 유기용매에서 쉽게 불활성화되지 않기 때문에 유기용매에 의한 효소 불활성화를 방지하기 위하여 별도로 그들을 고정화할 필요가 없다. 그러므로 다수의 생물공정 및 생물변환 공정에서 이용될 수 있는 잠재적인 유용성을 가지고 있다. 이들 유기용매 내성 리파아제들을 사용하면, 유기용매계 또는 비수계에서 다수의 불용성 기질들의 용해도가 증가하며, 수계에서는 불가능한 다양한 화학반응들이 일어나고, 가수분해 대신에 합성반응이 일어나며, 물에 의한 부반응이 억제되며, 화학, 위치 그리고 엔안티오(대칭) 선택성(chemo, regio and enantioselective) 변환반응의 가능성이 증가한다. 나아가 고정화하지 않아도 효소의 회수와 재이용이 가능하며, 유기용매계와 비수계에서는 리파아제의 안정성이 더 좋아지는 경향도 있다. 그러므로 유기용매 내성 리파아제는 유기용매계와 비수계를 이용한 생물변환공정에 생물촉매로써 그들을 이용가능하다는 점에서 많은 주목을 받고 있다.

Keywords

References

  1. Ayaz, B., Ugur, A. and Boran, R. 2015. Purification and characterization of organic solvent-tolerant lipase from Streptomyces sp. OC119-7 for biodiesel production. Biocatal. Agric. Biotechnol. 4, 103-108.
  2. Cao, Y., Wu, S., Li, J., Wu, B. and He, B. 2014. Highly efficient resolution of mandelic acid using lipase from Pseudomonas stutzeri LC2-8 and a molecular modeling approach to rationalize its enantioselectivity. J. Mol. Catal. B-Enzym. 99, 108-113. https://doi.org/10.1016/j.molcatb.2013.10.026
  3. Chakravorty, D., Parameswaran, S., Dubey, V. K. and Patra, S. 2012. Unraveling the rationale behind organic solvent stability of lipases. Appl. Biochem. Biotechnol. 167, 439-461. https://doi.org/10.1007/s12010-012-9669-9
  4. Cruden, D. L., Wolfram, J. H., Rogers, R. T. and Gibson, D. T. 1992. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl. Environ. Microbiol. 58, 2723-2729.
  5. De Bont, J. A. 1998. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol. 16, 493-499. https://doi.org/10.1016/S0167-7799(98)01234-7
  6. Doukyu, N. and Ogino, H. 2010. Organic solvent-tolerant enzymes. Biochem. Eng. J. 48, 270-282. https://doi.org/10.1016/j.bej.2009.09.009
  7. Dror, A., Shemesh, E., Dayan, N. and Fishman, A. 2014. Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Appl. Environ. Microbiol. 80, 1515-1527. https://doi.org/10.1128/AEM.03371-13
  8. Ganasen, M., Yaacob, N., Rahman, R. N., Leow, A. T., Basri, M., Salleh, A. B. and Ali, M. S. 2016. Cold-adapted organic solvent tolerant alkalophilic family I. 3 lipase from an Antarctic Pseudomonas. Int. J. Biol. Macromol. 92, 1266-1276. https://doi.org/10.1016/j.ijbiomac.2016.06.095
  9. Hartmans, S., van der Werf, M. J. and de Bont, J. A. 1990. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56, 1347-1351.
  10. Hun, C. J., Rahman, R. N., Salleh, A. B. and Basri, M. 2003. A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem. Eng. J. 15, 147-151. https://doi.org/10.1016/S1369-703X(02)00185-7
  11. Inoue, A. and Horikoshi, K. 1989. A Pseudomonas thrives in high concentrations of toluene. Nature 338, 264-266. https://doi.org/10.1038/338264a0
  12. Jain, D. and Mishra, S. 2015. Multifunctional solvent stable Bacillus lipase mediated biotransformations in the context of food and fuel. J. Mol. Catal. B-Enzym. 117, 21-30. https://doi.org/10.1016/j.molcatb.2015.04.002
  13. Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A. and Nadeem, H. 2017. Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol. http://dx.doi.org/10.1016/j.pbiomolbio.2017.07.014
  14. Kawata, T. and Ogino, H. 2010. Amino acid residues involved in organic solvent-stability of the LST-03 lipase. Biochem. Biophys. Res. Commun. 400, 384-388. https://doi.org/10.1016/j.bbrc.2010.08.080
  15. Kumar, A., Dhar, K., Kanwar, S. S. and Arora, P. K. 2016. Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18, 2. https://doi.org/10.1186/s12575-016-0033-2
  16. Li, X., Qian, P., Wu, S. G. and Yu, H. Y. 2014. Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles 18, 171-178. https://doi.org/10.1007/s00792-013-0610-0
  17. Li, M., Yang, L. R., Xu, G. and Wu, J. P. 2016. Cloning and characterization of a novel lipase from Stenotrophomonas maltophilia GS11: the first member of a new bacterial lipase family XVI. J. Biotechnol. 228, 30-36. https://doi.org/10.1016/j.jbiotec.2016.04.034
  18. Liu, G., Hu, S., Li, L. and Hou, Y. 2015. Purification and Characterization of a Lipase with High Thermostability and Polar Organic Solvent-Tolerance from Aspergillus niger AN0512. Lipids 50, 1155-1163. https://doi.org/10.1007/s11745-015-4052-6
  19. Maharana, A. and Ray, P. 2015. A novel cold-active lipase from psychrotolerant Pseudomonas sp. AKM-L5 showed organic solvent resistant and suitable for detergent formulation. J. Mol. Catal. B-Enzym. 120, 173-178. https://doi.org/10.1016/j.molcatb.2015.07.005
  20. Martinez, P. and Arnold, F. H. 1991. Surface charge substitutions increase the stability of alphalytic protease in organic solvents. J. Am. Chem. Soc. 113, 6336-6337. https://doi.org/10.1021/ja00016a096
  21. Na, K. S., Kuroda, A., Takiguchi, N., Ikeda, T., Ohtake, H. and Kato, J. 2005. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J. Biosci. Bioeng. 99, 378-382. https://doi.org/10.1263/jbb.99.378
  22. Ogino, H. and Ishikawa, H. 2001. Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng. 91, 109-116. https://doi.org/10.1016/S1389-1723(01)80051-7
  23. Ogino, H., Miyamoto, K. and Ishikawa, H. 1994. Organicsolvent-tolerant bacterium which secretes organic-solventstable lipolytic enzyme. Appl. Environ. Microbiol. 60, 3884-3886.
  24. Ogino, H., Yasui, K., Shiotani, T., Ishihara, T. and Ishikawa, H. 1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol. 61, 4258-4262.
  25. Patel, V., Nambiar, S. and Madamwar, D. 2014. An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment. Process Biochem. 49, 1673-1681. https://doi.org/10.1016/j.procbio.2014.06.007
  26. Ramos, J. L., Duque, E., Huertas, M. J. and Haidour, A. 1995. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol. 177, 3911-3916. https://doi.org/10.1128/jb.177.14.3911-3916.1995
  27. Salihu, A. and Alam, M. Z. 2015. Solvent tolerant lipases: a review. Process Biochem. 50, 86-96. https://doi.org/10.1016/j.procbio.2014.10.019
  28. Sharma, S. and Kanwar, S. S. 2014. Organic solvent tolerant lipases and applications. The Scientific World Jo.
  29. Singh, M. K., Singh, J., Kumar, M. and Thakur, I. S. 2014. Novel lipase from basidiomycetes Schizophyllum commune ISTL04, produced by solid state fermentation of Leucaena leucocephala seeds. J. Mol. Catal. B-Enzym. 110, 92-99. https://doi.org/10.1016/j.molcatb.2014.10.010
  30. Sivaramakrishnan, R. and Incharoensakdi, A. 2016. Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil. J. Biosci. Bioeng. 121, 517-522. https://doi.org/10.1016/j.jbiosc.2015.09.005
  31. Souza, L. T. A., Oliveira, J. S., dos Santos, V. L., Regis, W. C., Santoro, M. M. and Resende, R. R. 2014. Lipolytic potential of Aspergillus japonicus LAB01: production, partial purification, and characterisation of an extracellular lipase. BioMed Res. Int. 2014, 108913.
  32. Su, H., Mai, Z., Yang, J., Xiao, Y., Tian, X. and Zhang, S. 2016. Cloning, expression, and characterization of a coldactive and organic solvent-tolerant lipase from Aeromicrobium sp. SCSIO 25071. J. Microbiol. Biotechnol. 26, 1067-1076. https://doi.org/10.4014/jmb.1511.11068
  33. Torres, S., Pandey, A. and Castro, G. R. 2011. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol. Adv. 29, 442-452. https://doi.org/10.1016/j.biotechadv.2011.04.002
  34. Weber, F. J., Ooijkaas, L. P., Schemen, R. M., Hartmans, S. and de Bont, J. A. 1993. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microbiol. 59, 3502-3504.
  35. Yang, W., He, Y., Xu, L., Zhang, H. and Yan, Y. 2016. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. J. Mol. Catal. B-Enzym. 126, 76-89. https://doi.org/10.1016/j.molcatb.2016.02.005