DOI QR코드

DOI QR Code

Development and Validation of Real-time PCR to Determine Branchiostegus japonicus and B. albus Species Based on Mitochondrial DNA

Real-time PCR 분석법을 이용한 옥돔과 옥두어의 종 판별법 개발

  • Chung, In Young (Department of Microbiology, Pukyong National University) ;
  • Seo, Yong Bae (Department of Microbiology, Pukyong National University) ;
  • Yang, Ji-Young (Department of Food Science & Technology, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbiology, Pukyong National University)
  • Received : 2017.10.12
  • Accepted : 2017.11.02
  • Published : 2017.11.30

Abstract

DNA barcoding is the identification of a species based on the DNA sequence of a fragment of the cytochrome C oxidase subunit I (COI) gene in the mitochondrial genome. It is widely applied to assist with the sustainable development of fishery-product resources and the protection of fish biodiversity. This study attempted to verify horse-head fish (Branchiostegus japonicus) and fake horse-head fish (Branchiostegus albus) species, which are commonly consumed in Korea. For the validation of the two species, a real-time PCR method was developed based on the species' mitochondrial DNA genome. Inter-species variations in mitochondrial DNA were observed in a bioinformatics analysis of the mitochondrial genomic DNA sequences of the two species. Some highly conserved regions and a few other regions were identified in the mitochondrial COI of the species. In order to test whether variations in the sequences were definitive, primers that targeted the varied regions of COI were designed and applied to amplify the DNA using the real-time PCR system. Threshold-cycle (Ct) range results confirmed that the Ct ranges of the real-time PCR were identical to the expected species of origin. Efficiency, specificity and cross-reactivity assays showed statistically significant differences between the average Ct of B. japonicus DNA ($21.85{\pm}3.599$) and the average Ct of B. albus DNA ($33.49{\pm}1.183$) for confirming B. japonicus. The assays also showed statistically significant differences between the average Ct of B. albus DNA ($22.49{\pm}0.908$) and the average Ct of B. japonicus DNA ($33.93{\pm}0.479$) for confirming B. albus. The methodology was validated by using ten commercial samples. The genomic DNA-based molecular technique that used the real-time PCR was a reliable method for the taxonomic classification of animal tissues.

미토콘드리아 게놈에 존재하는 시토크롬C 산화효소 서브유닛 I (cytochrome C oxidase subunit I, COI) 유전자의 DNA 염기서열을 기반으로 하는 종 판별은 수산물 자원의 지속적인 개발과 어류 다양성 보존을 위해 폭넓게 적용되고 있다. 본 연구에서는 한국에서 소비되는 옥돔과 가짜 옥돔으로 둔갑하는 옥두어의 종 판별을 위한 분석법을 개발하였다. 옥돔과 옥두어, 두 종의 종 판별과 검증을 위해 미토콘드리아 게놈의 DNA 염기서열 차이를 이용하여 real-time PCR법에 의해 분석하였다. 미토콘드리아 DNA 서열의 생물정복학적 분석에서 옥돔과 형태학적 옥돔 유사종인 옥두어, 두 종 사이에 COI 유전자 내에서 상당히 유사한 DNA 서열 부분과 일부 서열 변화 부분이 확인되었다. 명확하게 종 판별을 하기 위해 COI 유전자 내에서 일부 변화된 서열에서 종 특이적 프라이머를 디자인하였다. 10 개체의 옥돔과 옥두어에서 게놈 DNA을 추출하여 옥돔과 옥두어의 종 특이적 프라이머를 이용하여 real-time PCR 시스템에 의해 분석되었다. 이러한 real-time PCR 시스템을 이용한 genomic DNA 기반의 분자 기술은 동물 조직의 분류학적 분류를 위한 신뢰할 수 있는 방법을 제공한다. 옥돔판별을 위해, 옥돔 DNA에서 옥돔 종 특이적 프라이머를 이용한 Ct 평균값($21.85{\pm}3.599$)과 옥두어 DNA에서 옥돔 종 특이 프라아머를 이용한 Ct 평균값($33.49{\pm}1.183$) 차이를 나타내었다. 그리고 옥두어판별을 위해, 옥두어 DNA에서 옥두어 종 특이적 프라이머를 이용한 Ct 평균값($22.49{\pm}0.908$)과 옥돔 DNA에서 옥두어 종 특이 프라아머를 이용한 Ct 평균값($33.93{\pm}0.479$)을 통해 옥돔과 옥두어의 각 종 특이 프라이머의 효율성, 특이성 및 교차 반응성 측정은 통계적으로 유의한 차이를 보여 주었다. 제안된 방법은 10개의 상용 샘플로 검증이 되었다. 따라서, threshold cycle (Ct) value와 같은 real-time PCR 결과 분석에 의해 종 판별이 가능하였다.

Keywords

References

  1. Aida, A. A., Che Man, Y. B., Wong, C. M. V. L., Raha, A. R. and Son, R. 2005. Analysis of raw meats and fats of pig using polymerase chain reaction for halal authentication. Meat Sci. 79, 47-52.
  2. Velasco, A., Sanchez, A., Martinez, I., Santaclara, F. J., Perez-Martin, R. I. and Sotelo, C. G. 2013. Development of a Real-Time PCR method for the identification of Atlantic mackerel (Scomber scombrus). Food Chem. 141, 2006-210. https://doi.org/10.1016/j.foodchem.2013.05.077
  3. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R. and Young, I. G. 1981. Sequence and organization of the human mitochondrial genome. Nature 290, 457-465. https://doi.org/10.1038/290457a0
  4. Attardi, G. and Schatz, G. 1988. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4, 289-333. https://doi.org/10.1146/annurev.cb.04.110188.001445
  5. Axayacatl, R. O. and Juan, P. C. G. 2008. Molecular identification of dolphinfish species (genus Coryphaena) using multiplex haplotype-specific PCR of mitochondrial DNA. Ichthyol. Res. 55, 389-393. https://doi.org/10.1007/s10228-008-0040-7
  6. Bataille, M., Crainic, K., Leterreux, M., Durigon, M. and de Mazancourt, P. 1999. Multiplex amplification of mitochondrial DNA for human and species identification in forensic evaluation. Forensic Sci. Int. 99, 165-170. https://doi.org/10.1016/S0379-0738(98)00185-6
  7. Birstein, V. J. and DeSalle, R. 1998. Molecular phylogeny of Acipenserinae. Mol. Phylogenet. Evol. 9, 141-155. https://doi.org/10.1006/mpev.1997.0443
  8. Brown, J. R., Beckenbach, K., Beckenbach, A. T. and Smith, M. J. 1996. Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics 142, 525-35.
  9. Burgener, M. and Hubner, P. 1998. Mitochondrial DNA enrichment for species identification and evolutionary analysis. Z. Lebensm. Unters. Forsch. 207, 261-263. https://doi.org/10.1007/s002170050329
  10. Cano, R. J., Poinar, H. N., Pieniazek, N. J., Acra, A. and Poinar, G. O. Jr. 1993. Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature 363, 536-538. https://doi.org/10.1038/363536a0
  11. Chow, S., Clarke, M. E. and Walsh, P. J. 1993. PCR-RFLP analysis on thirteen western Atlantic snappers (subfamily Lutjaninae): a simple method for species and stock identification. Fish. Bull. 91, 619-627.
  12. Chung, Y. H., Oh, D. J., Oh, B. S., Chung, M. M., Lee, K. H. and Kim, J. H. 2013. Method for discriminating between Branchiostegus japonicus and Branchiostegus albus and a kit therefor. Korea patent. Kr-A-1012921690000
  13. Civera, T. 2003. Species identification and safety of fish products. Vet. Res. Commun. 27, 481-489. https://doi.org/10.1023/B:VERC.0000014205.87859.ab
  14. Collura, R. V. and Stewart, C. B. 1995. Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378, 485-489. https://doi.org/10.1038/378485a0
  15. DeSalle, R., Williams, A. K. and George, M. 1993. Isolation and characterization of animal mitochondrial DNA. Methods Enzymol. 224, 176-204.
  16. Esposti, M. D., De Vries, S., Crimi, M., Ghelli, A., Patarnello, T. and Meyer, A. 1993. Mitochondrial cytochrome b: evolution and structure of the protein. Biochim. Biophys. Acta. 1143, 243-271. https://doi.org/10.1016/0005-2728(93)90197-N
  17. Fabrice, T. 2009. Molecular identification methods of fish species: reassessment and possible applications. Rev. Fish. Biol. Fisheries 19, 265-293. https://doi.org/10.1007/s11160-009-9107-4
  18. Giles, R. E., Blanc, H., Cann, H. M. and Wallance, D. C. 1980. Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 77, 6715-6719. https://doi.org/10.1073/pnas.77.11.6715
  19. Hayashi, J., Tagashira, Y. and Yoshida, M. C. 1985. Absence of extensive recombination between inter and intraspecies mitochondrial DNA in mammalian cells. Exp. Cell. Res. 160, 387-395. https://doi.org/10.1016/0014-4827(85)90185-5
  20. Heo, E. J., Ko, E. K., Seo, K. H., Kim, Y. J., Park, H. J., Wee, S. H. and Moon, J. S. 2014. Validation of PCR and ELISA test kits for identification of domestic animal species in raw meat and meat products in Korea. J. Fd. Hyg. Safety 29, 158-163. https://doi.org/10.13103/JFHS.2014.29.2.158
  21. Irwin, D. M., Kocher, T. D. and Wilson, A. C. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 123-144.
  22. Jenuth, J. P., Perterson, A. C., Fu, K. and Shoubridge, E. A. 1997. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat. Genet. 14, 146-151.
  23. Jeong, M. G. 1998. The fishes of Korea. Iljisa, Seoul, Korea. pp. 331-332.
  24. Kim, K. H., Lee, H. Y., Kim, Y. S., Kim, M. R., Jung, Y. K., Lee, J. H., Cho, T. Y., Lee, H. J., Lee, S. J. and Han, S. B. 2014. Development of species-specific PCR to determine the animal row material. J. Food Hyg. Safety 29, 347-355. https://doi.org/10.13103/JFHS.2014.29.4.347
  25. Kim, M., Yoo, I., Lee, S. Y., Hong, Y. and Kim, H. Y. 2016. Quantitative detection of pork in commercial meat products by TaqMan(R) real-time PCR assay targeting the mitochondrial D-loop region. Food Chem. 210, 102-106. https://doi.org/10.1016/j.foodchem.2016.04.084
  26. Kim, Y. U., Kim, Y. M. and Kim, Y. S. 1994. Commercial fishes of the coastal and offshore waters in Korea. Nat. Fish. Res. Dev. Agency, pp. 83.
  27. Liu, B. J., Zhang, B. D., Xue, D. X., Gao, T. X. and Liu, J. X. 2016. Population structure and adaptive divergence in a high gene flow marine fish: the small yellow croaker (Larimichthys polyactis). PloS One 11, e0154020. https://doi.org/10.1371/journal.pone.0154020
  28. Mackie, I., Craig, A., Etienne, M., Jerome, M., Fleurence, J., Jessen, F., Smelt, A., Kruijt, A., Yman, I. M., Ferm, M., Martinez, I., Martin, R. P., Pineiro, C., Rehbein, H. and Kundiger, R. 2000. Species identification of smoked and gravid fish products by sodium dodecylsulphate polyacrylamide gel electrophoresis, urea isoelectric focusing and native isoelectric focusing: a collaborative study. Food Chem. 71, 1-7. https://doi.org/10.1016/S0308-8146(00)00147-3
  29. Martin, I., Garcia, T., Fajardo, V., Lopez-Calleja, I., Rojas, M., Pavon, M. A., Hernandez, P. E., Gonzalez, I. and Martin, R. 2007. Detection of chicken, turkey, duck, and goose tissues in feedstuffs using species-specific polymerase chain reaction. J. Anim. Sci. 85, 452-458. https://doi.org/10.2527/jas.2006-350
  30. Martin, I., Garcia, T., Fajardo, V., Rojas, M., Hernandez, P. E., Gonzalez, I. and Martin, R. 2007. Technical note: Detection of cat, dog, and rat or mouse tissues in food and animal feed using species-specific polymerase chain reaction. J. Anim. Sci. 85, 2734-2739. https://doi.org/10.2527/jas.2007-0048
  31. Moretti, V. M., Truchini, G. M., Bellagamba, F. and Caprino, F. 2003. Traceability issues in fishery and aquaculture products. Vet. Res. Commun. 27, 497-505. https://doi.org/10.1023/B:VERC.0000014207.01900.5c
  32. Pirger, Z., Ra'cz, B. and Kiss, T. 2009. Dopamine-induced programmed cell death is associated with cytochrome c release and caspase-3 activation in snail salivary gland cells. Biol. Cell 101, 105-116. https://doi.org/10.1042/BC20070168
  33. Park, J. K., Shin, K. H., Shin, S. C., Chung, K. Y. and Chung E. R. 2012. Identification of meat species using species- specific PCR-RFLP fingerprint of mitochondrial 12S rRNA gene. Kor. J. Food Sci. An. 27, 209-215.
  34. Park, Y. C., Jin, S. O., Lim, J. Y., Kim, K. H., Lee, J. H., Cho, T. Y., Lee, H. J., Han, S. B., Lee, S. J., Lee, K. H. and Yoon H. S. 2012. Application for identification of food raw materials by PCR using universal primer. J. Fd. Hyg. Safety 27, 317-324. https://doi.org/10.13103/JFHS.2012.27.3.317
  35. Santaclara, F. J., Espiñeira, M. and Vieites, J. M. 2007. Genetic identification of squids (Families Ommastrephidae and Loliginidae) by PCR-RFLP and FINS methodologies. J. Agric. Food Chem. 55, 9914-9920.
  36. Sezaki, K., Itoi, S. and Watabe, S. 2005. A simple method to distinguish two commercially valuable eel species in Japan Anguilla japonica and A. Anguilla using polymerase chain reaction strategy with a species-specific primer. Fisheries Sci. 71, 414-421. https://doi.org/10.1111/j.1444-2906.2005.00979.x
  37. Shoko, M., Kouji, N., Yoshiaki, K. and Yoh, Y. 2012. Genetic divergence among three morphs of Acentrogobius pflaumii (Gobiidae) around Japan and their identification using multiplex haplotype-specific PCR of mitochondrial DNA. Ichthyol. Res. 59, 216-222. https://doi.org/10.1007/s10228-012-0276-0
  38. Tanabe, S., Miyauchi, E., Muneshige, A., Mio, K., Sato, C. and Sato, M. 2007. PCR method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods. Biosci. Biotechnol. Biochem. 71, 1663-1667. https://doi.org/10.1271/bbb.70075
  39. Wallance, D. C. 1999. Mitochondrial diseases in man and mouse. Science 283, 1482-1488. https://doi.org/10.1126/science.283.5407.1482
  40. Wolf, C., Rentsch, J. and Hubner P. 1999. PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. J. Agric. Food Chem. 47, 1350-1355. https://doi.org/10.1021/jf9808426