DOI QR코드

DOI QR Code

Wnt에 의한 epithelial-to-mesenchymal transition에서 PFKFB2의 역할

The Role of Phosphofructokinase-2/Fructose-2,6-bisphosphatase 2 (PFKFB2) in Wnt-induced Epithelial-mesenchymal Transition

  • 이수연 (부산대학교 자연과학대학 분자생물학과) ;
  • 주민경 (부산대학교 자연과학대학 분자생물학과) ;
  • 전현민 (부산대학교 자연과학대학 분자생물학과) ;
  • 김초희 (부산대학교 자연과학대학 분자생물학과) ;
  • 박혜경 (한국나노바이오테크놀러지센터) ;
  • 강호성 (부산대학교 자연과학대학 분자생물학과)
  • Lee, Su Yeon (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Ju, Min Kyung (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeon, Hyun Min (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Kim, Cho Hee (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Park, Hye Gyeong (Nanobiotechnology Center, Pusan National University) ;
  • Kang, Ho Sung (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • 투고 : 2017.08.17
  • 심사 : 2017.09.27
  • 발행 : 2017.11.30

초록

암세포는 정상세포와는 다른 metabolism 특히 glycolytic switch를 나타낸다. Glycolytic switch는 암세포가 정상세포와 달리 산소가 충분한 상태에서도 미토콘드리아에 의존하지 않고 glycolysis를 통해 대부분의 ATP 에너지를 생성하는 현상이다. 또한 암세포는 invasion 및 metastasis 능력을 획득하기 위해 epithelial-mesenchymal transition (EMT)를 나타낸다. EMT와 glycolytic switch는 암세포의 생존 및 증식에 관여하는 중요한 현상이지만, 이들 상호작용 및 그 기작에 대한 연구는 아직 밝혀져 있지 않다. Snail은 EMT를 유도하는 주요한 전사인자이다. 본 연구진은 이전 연구에서 Snail이 발생 및 암성장에 관여하는 전사인자인 Dlx-2에 의해 조절됨을 밝혔다. 또한 Wnt가 Dlx-2/Snail cascade을 통하여 EMT 및 glycolytic switch을 유도함을 밝혔다. 본 연구에서는 glycolytic switch가 Wnt에 의한 EMT에 미치는 영향을 규명하고자 하였다. Dlx-2/Snail의 glycolytic switch target 유전자로 phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2)를 발굴하였다. PFKFB2는 fructose-2,6-bisphosphate (F2,6BP)의 합성 및 분해에 관여하는 효소로서 glycolysis에서 중요하게 작용한다. Wnt에 의해 PFKFB2 발현이 Dlx-2/Snail 의존적으로 증가함을 관찰하였다. 또한 PFKFB2를 knockdown한 결과 Wnt에 의한 EMT가 억제되므로 glycolytic switch가 Wnt에 의한 EMT에 관여할 가능성이 높을 것으로 보인다. 뿐만 아니라 PFKFB2 shRNA가 xenograft mouse model에서 tumor 성장 및 metastasis를 억제하는 것으로 나타났다. 또한 Human 암조직에서 정상조직에 비해 PFKFB2의 발현이 높음을 관찰하였다. 따라서 PFKFB2가 Wnt-Dlx-2/Snail-induced EMT 및 metastasis에서 중요한 역할을 할 것으로 예상된다.

Most cancer cells produce ATP predominantly through glycolysis instead of through mitochondrial oxidative phosphorylation, even in the presence of oxygen. The phenomenon is termed the Warburg effect, or the glycolytic switch, and it is thought to increase the availability of biosynthetic precursors for cell proliferation. EMTs have critical roles in the initiation of the invasion and metastasis of cancer cells. The glycolytic switch and EMT are important for tumor development and progression; however, their correlation with tumor progression is largely unknown. The Snail transcription factor is a major factor involved in EMT. The Snail expression is regulated by distal-less homeobox 2 (Dlx-2), a homeodomain transcription factor that is involved in embryonic and tumor development. The Dlx-2/Snail cascade is involved in Wnt-induced EMTs and the glycolytic switch. This study showed that in response to Wnt signaling, the Dlx-2/Snail cascade induces the expression of PFKFB2, which is a glycolytic enzyme that synthesizes and degrades fructose 2, 6-bisphosphate (F2,6BP). It also showed that PFKFB2 shRNA prevents Wnt-induced EMTs in the breast-tumor cell line MCF-7. The prevention indicated that glycolysis is linked to Wnt-induced EMT. Additionally, this study showed PFKFB2 shRNA suppresses in vivo tumor metastasis and growth. Finally, it showed the PFKFB2 expression is higher in breast, colon and ovarian cancer tissues than in matched normal tissues regardless of the cancers' stages. The results demonstrated that PFKFB2 is an important regulator of EMTs and metastases induced by the Wnt, Dlx-2 and Snail factors.

키워드

참고문헌

  1. Anastas, J. N. and Moon, R. T. 2013. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11-26. https://doi.org/10.1038/nrc3419
  2. Barnard, M. E., Boeke, C. E. and Tamimi, R. M. 2015. Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochim. Biophys. Acta 1856, 73-85.
  3. Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K. H. 2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107-120. https://doi.org/10.1016/j.cell.2006.05.036
  4. Bhatt, A. N., Chauhan, A., Khanna, S., Rai, Y., Singh, S., Soni, R., Kalra, N. and Dwarakanath, B. S. 2015. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells. BMC Cancer 15, 335. https://doi.org/10.1186/s12885-015-1368-9
  5. Boroughs, L. K. and DeBerardinis, R. J. 2015. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351-359. https://doi.org/10.1038/ncb3124
  6. Cairns, R. A., Harris, I. S. and Mak, T. W. 2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95. https://doi.org/10.1038/nrc2981
  7. Dang, C. V. 2012. Links between metabolism and cancer. Genes Dev. 26, 877-890. https://doi.org/10.1101/gad.189365.112
  8. Dave, B., Mittal, V., Tan, N. M. and Chang, J. C. 2012. Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res. 14, 202. https://doi.org/10.1186/bcr2938
  9. De Craene, B. and Berx, G. 2013. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97-110. https://doi.org/10.1038/nrc3447
  10. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
  11. Dhasarathy, A., Phadke, D., Mav, D., Shah, R. R. and Wade, P. A. 2011. The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS ONE 6, e26514. https://doi.org/10.1371/journal.pone.0026514
  12. Dong, C., Yuan, T., Wu, Y., Wang, Y., Fan, T. W., Miriyala, S., Lin, Y., Yao, J., Shi, J., Kang, T., Lorkiewicz, P., St Clair, D., Hung, M. C., Evers, B. M. and Zhou, B. P. 2013. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316-331. https://doi.org/10.1016/j.ccr.2013.01.022
  13. Finley, L. W., Zhang, J., Ye, J., Ward, P. S. and Thompson, C. B. 2013. SnapShot: cancer metabolism pathways. Cell Metab. 17, 466-466 e462. https://doi.org/10.1016/j.cmet.2013.02.016
  14. Hanahan, D. and Weinberg, R. A. 2000. The hallmarks of cancer. Cell 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  15. Hanahan, D. and Weinberg, R. A. 2011. Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  16. Hirschey, M. D., DeBerardinis, R. J., Diehl, A. M., Drew, J. E., Frezza, C., Green, M. F., Jones, L. W., Ko, Y. H., Le, A., Lea, M. A., Locasale, J. W., Longo, V. D., Lyssiotis, C. A., McDonnell, E., Mehrmohamadi, M., Michelotti, G., Muralidhar, V., Murphy, M. P., Pedersen, P. L., Poore, B., Raffaghello, L., Rathmell, J. C., Sivanand, S., Vander Heiden, M. G., Wellen, K. E. and Target Validation, T. 2015. Dysregulated metabolism contributes to oncogenesis. Semin. Cancer Biol. 35 Suppl, S129-150. https://doi.org/10.1016/j.semcancer.2015.10.002
  17. Hsu, P. P. and Sabatini, D. M. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707. https://doi.org/10.1016/j.cell.2008.08.021
  18. Hua, G., Liu, Y., Li, X., Xu, P. and Luo, Y. 2014. Targeting glucose metabolism in chondrosarcoma cells enhances the sensitivity to doxorubicin through the inhibition of lactate dehydrogenase-A. Oncol. Rep. 31, 2727-2734. https://doi.org/10.3892/or.2014.3156
  19. Iida, J., Dorchak, J., Lehman, J. R., Clancy, R., Luo, C., Chen, Y., Somiari, S., Ellsworth, R. E., Hu, H., Mural, R. J. and Shriver, C. D. 2012. FH535 inhibited migration and growth of breast cancer cells. PLoS ONE 7, e44418. https://doi.org/10.1371/journal.pone.0044418
  20. King, T. D., Suto, M. J. and Li, Y. 2012. The Wnt/beta-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J. Cell. Biochem. 113, 13-18. https://doi.org/10.1002/jcb.23350
  21. Klaus, A. and Birchmeier, W. 2008. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 8, 387-398. https://doi.org/10.1038/nrc2389
  22. Kole, H. K., Resnick, R. J., Van Doren, M. and Racker, E. 1991. Regulation of 6-phosphofructo-1-kinase activity in ras-transformed rat-1 fibroblasts. Arch. Biochem. Biophys. 286, 586-590. https://doi.org/10.1016/0003-9861(91)90084-V
  23. Koppenol, W. H., Bounds, P. L. and Dang, C. V. 2011. Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337. https://doi.org/10.1038/nrc3038
  24. Kwon, T., Youn, H., Son, B., Kim, D., Seong, K. M., Park, S., Kim, W. and Youn, B. 2016. DANGER is involved in high glucose-induced radioresistance through inhibiting DAPK-mediated anoikis in non-small cell lung cancer. Oncotarget 7, 7193-7206.
  25. Lamouille, S., Xu, J. and Derynck, R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196. https://doi.org/10.1038/nrm3758
  26. Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2016. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget 7, 7925-7939.
  27. Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Yoo, M. A., Park, H. G., Han, S. I. and Kang, H. S. 2015. Dlx-2 is implicated in TGF-beta- and Wnt-induced epithelial-mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation. Int. J. Oncol. 46, 1768-1780. https://doi.org/10.3892/ijo.2015.2874
  28. Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G. and Kang, H. S. 2012. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 72, 3607-3617. https://doi.org/10.1158/0008-5472.CAN-12-0006
  29. Lee, S. Y., Jeon, H. M., Kim, C. H., Ju, M. K., Bae, H. S., Park, H. G., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis. Mol. Cancer 10, 113. https://doi.org/10.1186/1476-4598-10-113
  30. Lee, S. Y., Jeong, E. K., Ju, M. K., Jeon, H. M., Kim, M. Y., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2017. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer 16, 10. https://doi.org/10.1186/s12943-016-0577-4
  31. Liu, K., Tang, Z., Huang, A., Chen, P., Liu, P., Yang, J., Lu, W., Liao, J., Sun, Y., Wen, S., Hu, Y. and Huang, P. 2017. Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. Int. J. Oncol. 50, 252-262. https://doi.org/10.3892/ijo.2016.3774
  32. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J. and Weinberg, R. A. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715. https://doi.org/10.1016/j.cell.2008.03.027
  33. Merlo, G. R., Zerega, B., Paleari, L., Trombino, S., Mantero, S. and Levi, G. 2000. Multiple functions of Dlx genes. Int. J. Dev. Biol. 44, 619-626.
  34. Mims, J., Bansal, N., Bharadwaj, M. S., Chen, X., Molina, A. J., Tsang, A. W. and Furdui, C. M. 2015. Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer. Radiat. Res. 183, 291-304. https://doi.org/10.1667/RR13828.1
  35. Minchenko, A., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V. and Caro, J. 2002. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. 277, 6183-6187. https://doi.org/10.1074/jbc.M110978200
  36. Minchenko, O., Opentanova, I. and Caro, J. 2003. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Lett. 554, 264-270. https://doi.org/10.1016/S0014-5793(03)01179-7
  37. Minchenko, O. H., Ogura, T., Opentanova, I. L., Minchenko, D. O., Ochiai, A., Caro, J., Komisarenko, S. V. and Esumi, H. 2005. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family overexpression in human lung tumor. Ukr. Biokhim. Zh. (1999) 77, 46-50.
  38. Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., Clark, L., Bayani, N., Coppe, J. P., Tong, F., Speed, T., Spellman, P. T., DeVries, S., Lapuk, A., Wang, N. J., Kuo, W. L., Stilwell, J. L., Pinkel, D., Albertson, D. G., Waldman, F. M., McCormick, F., Dickson, R. B., Johnson, M. D., Lippman, M., Ethier, S., Gazdar, A. and Gray, J. W. 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515-527. https://doi.org/10.1016/j.ccr.2006.10.008
  39. Okar, D. A., Manzano, A., Navarro-Sabate, A., Riera, L., Bartrons, R. and Lange, A. J. 2001. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci. 26, 30-35. https://doi.org/10.1016/S0968-0004(00)01699-6
  40. Okar, D. A., Wu, C. and Lange, A. J. 2004. Regulation of the regulatory enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Adv. Enzyme Regul. 44, 123-154. https://doi.org/10.1016/j.advenzreg.2003.11.006
  41. Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., Xu, Y., Wonsey, D., Lee, L. A. and Dang, C. V. 2000. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797-21800. https://doi.org/10.1074/jbc.C000023200
  42. Panganiban, G. and Rubenstein, J. L. 2002. Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371-4386.
  43. Peinado, H., Olmeda, D. and Cano, A. 2007. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415-428. https://doi.org/10.1038/nrc2131
  44. Peng, X., Gong, F., Chen, Y., Jiang, Y., Liu, J., Yu, M., Zhang, S., Wang, M., Xiao, G. and Liao, H. 2014. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-alpha-mediated signaling. Cell Death Dis. 5, e1367. https://doi.org/10.1038/cddis.2014.297
  45. Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S. X., Lonning, P. E., Borresen-Dale, A. L., Brown, P. O. and Botstein, D. 2000. Molecular portraits of human breast tumours. Nature 406, 747-752. https://doi.org/10.1038/35021093
  46. Pickup, M., Novitskiy, S. and Moses, H. L. 2013. The roles of TGFbeta in the tumour microenvironment. Nat. Rev. Cancer 13, 788-799. https://doi.org/10.1038/nrc3603
  47. Pohl, S. G., Brook, N., Agostino, M., Arfuso, F., Kumar, A. P. and Dharmarajan, A. 2017. Wnt signaling in triple-negative breast cancer. Oncogenesis 6, e310. https://doi.org/10.1038/oncsis.2017.14
  48. Polyak, K. and Weinberg, R. A. 2009. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265-273. https://doi.org/10.1038/nrc2620
  49. Puisieux, A., Brabletz, T. and Caramel, J. 2014. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488-494. https://doi.org/10.1038/ncb2976
  50. Ros, S. and Schulze, A. 2013. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 1, 8. https://doi.org/10.1186/2049-3002-1-8
  51. Sattler, U. G., Meyer, S. S., Quennet, V., Hoerner, C., Knoerzer, H., Fabian, C., Yaromina, A., Zips, D., Walenta, S., Baumann, M. and Mueller-Klieser, W. 2010. Glycolytic metabolism and tumour response to fractionated irradiation. Radiother. Oncol. 94, 102-109. https://doi.org/10.1016/j.radonc.2009.11.007
  52. Schulze, A. and Harris, A. L. 2012. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364-373. https://doi.org/10.1038/nature11706
  53. Singh, A. and Settleman, J. 2010. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751. https://doi.org/10.1038/onc.2010.215
  54. Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Thorsen, T., Quist, H., Matese, J. C., Brown, P. O., Botstein, D., Lonning, P. E. and Borresen-Dale, A. L. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869-10874. https://doi.org/10.1073/pnas.191367098
  55. Tang, P., Huang, H., Chang, J., Zhao, G. F., Lu, M. L. and Wang, Y. 2013. Increased expression of DLX2 correlates with advanced stage of gastric adenocarcinoma. World J. Gastroenterol. 19, 2697-2703. https://doi.org/10.3748/wjg.v19.i17.2697
  56. Thiery, J. P. and Sleeman, J. P. 2006. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131-142. https://doi.org/10.1038/nrm1835
  57. Tsai, J. H. and Yang, J. 2013. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27, 2192-2206. https://doi.org/10.1101/gad.225334.113
  58. Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  59. Wang, S. S., Jiang, J., Liang, X. H. and Tang, Y. L. 2015. Links between cancer stem cells and epithelial-mesenchymal transition. Onco Targets Ther. 8, 2973-2980.
  60. Wang, Y., Shi, J., Chai, K., Ying, X. and Zhou, B. P. 2013. The role of snail in EMT and tumorigenesis. Curr. Cancer Drug Targets 13, 963-972. https://doi.org/10.2174/15680096113136660102
  61. Warburg, O. 1956. On respiratory impairment in cancer cells. Science 124, 269-270.
  62. Yalcin, A., Solakoglu, T. H., Ozcan, S. C., Guzel, S., Peker, S., Celikler, S., Balaban, B. D., Sevinc, E., Gurpinar, Y. and Chesney, J. A. 2017. 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase-3 is required for transforming growth factor beta1-enhanced invasion of Panc1 cells in vitro. Biochem. Biophys. Res. Commun. 484, 687-693. https://doi.org/10.1016/j.bbrc.2017.01.178
  63. Yalcin, A., Telang, S., Clem, B. and Chesney, J. 2009. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp. Mol. Pathol. 86, 174-179. https://doi.org/10.1016/j.yexmp.2009.01.003
  64. Yan, Z. H., Bao, Z. S., Yan, W., Liu, Y. W., Zhang, C. B., Wang, H. J., Feng, Y., Wang, Y. Z., Zhang, W., You, G., Zhang, Q. G. and Jiang, T. 2013. Upregulation of DLX2 confers a poor prognosis in glioblastoma patients by inducing a proliferative phenotype. Curr. Mol. Med. 13, 438-445.
  65. Yao, H., He, G., Yan, S., Chen, C., Song, L., Rosol, T. J. and Deng, X. 2016. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8, 1913-1924.
  66. Yilmaz, M., Maass, D., Tiwari, N., Waldmeier, L., Schmidt, P., Lehembre, F. and Christofori, G. 2011. Transcription factor Dlx2 protects from TGFbeta-induced cell-cycle arrest and apoptosis. EMBO J. 30, 4489-4499. https://doi.org/10.1038/emboj.2011.319
  67. Zhao, L., Ji, G., Le, X., Wang, C., Xu, L., Feng, M., Zhang, Y., Yang, H., Xuan, Y., Yang, Y., Lei, L., Yang, Q., Lau, W. B., Lau, B., Chen, Y., Deng, X., Yao, S., Yi, T., Zhao, X., Wei, Y. and Zhou, S. 2017. Long noncoding RNA LINC00092 acts in cancer-associated fibroblasts to drive glycolysis and progression of ovarian cancer. Cancer Res. 77, 1369-1382. https://doi.org/10.1158/0008-5472.CAN-16-1615
  68. Zhao, Y., Butler, E. B. and Tan, M. 2013. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4, e532. https://doi.org/10.1038/cddis.2013.60
  69. Zhou, M., Zhao, Y., Ding, Y., Liu, H., Liu, Z., Fodstad, O., Riker, A. I., Kamarajugadda, S., Lu, J., Owen, L. B., Ledoux, S. P. and Tan, M. 2010. Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol. Cancer 9, 33.