References
- Anastas, J. N. and Moon, R. T. 2013. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11-26. https://doi.org/10.1038/nrc3419
- Barnard, M. E., Boeke, C. E. and Tamimi, R. M. 2015. Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochim. Biophys. Acta 1856, 73-85.
- Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K. H. 2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107-120. https://doi.org/10.1016/j.cell.2006.05.036
- Bhatt, A. N., Chauhan, A., Khanna, S., Rai, Y., Singh, S., Soni, R., Kalra, N. and Dwarakanath, B. S. 2015. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells. BMC Cancer 15, 335. https://doi.org/10.1186/s12885-015-1368-9
- Boroughs, L. K. and DeBerardinis, R. J. 2015. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351-359. https://doi.org/10.1038/ncb3124
- Cairns, R. A., Harris, I. S. and Mak, T. W. 2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95. https://doi.org/10.1038/nrc2981
- Dang, C. V. 2012. Links between metabolism and cancer. Genes Dev. 26, 877-890. https://doi.org/10.1101/gad.189365.112
- Dave, B., Mittal, V., Tan, N. M. and Chang, J. C. 2012. Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res. 14, 202. https://doi.org/10.1186/bcr2938
- De Craene, B. and Berx, G. 2013. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97-110. https://doi.org/10.1038/nrc3447
- DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
- Dhasarathy, A., Phadke, D., Mav, D., Shah, R. R. and Wade, P. A. 2011. The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS ONE 6, e26514. https://doi.org/10.1371/journal.pone.0026514
- Dong, C., Yuan, T., Wu, Y., Wang, Y., Fan, T. W., Miriyala, S., Lin, Y., Yao, J., Shi, J., Kang, T., Lorkiewicz, P., St Clair, D., Hung, M. C., Evers, B. M. and Zhou, B. P. 2013. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316-331. https://doi.org/10.1016/j.ccr.2013.01.022
- Finley, L. W., Zhang, J., Ye, J., Ward, P. S. and Thompson, C. B. 2013. SnapShot: cancer metabolism pathways. Cell Metab. 17, 466-466 e462. https://doi.org/10.1016/j.cmet.2013.02.016
- Hanahan, D. and Weinberg, R. A. 2000. The hallmarks of cancer. Cell 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
- Hanahan, D. and Weinberg, R. A. 2011. Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
- Hirschey, M. D., DeBerardinis, R. J., Diehl, A. M., Drew, J. E., Frezza, C., Green, M. F., Jones, L. W., Ko, Y. H., Le, A., Lea, M. A., Locasale, J. W., Longo, V. D., Lyssiotis, C. A., McDonnell, E., Mehrmohamadi, M., Michelotti, G., Muralidhar, V., Murphy, M. P., Pedersen, P. L., Poore, B., Raffaghello, L., Rathmell, J. C., Sivanand, S., Vander Heiden, M. G., Wellen, K. E. and Target Validation, T. 2015. Dysregulated metabolism contributes to oncogenesis. Semin. Cancer Biol. 35 Suppl, S129-150. https://doi.org/10.1016/j.semcancer.2015.10.002
- Hsu, P. P. and Sabatini, D. M. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707. https://doi.org/10.1016/j.cell.2008.08.021
- Hua, G., Liu, Y., Li, X., Xu, P. and Luo, Y. 2014. Targeting glucose metabolism in chondrosarcoma cells enhances the sensitivity to doxorubicin through the inhibition of lactate dehydrogenase-A. Oncol. Rep. 31, 2727-2734. https://doi.org/10.3892/or.2014.3156
- Iida, J., Dorchak, J., Lehman, J. R., Clancy, R., Luo, C., Chen, Y., Somiari, S., Ellsworth, R. E., Hu, H., Mural, R. J. and Shriver, C. D. 2012. FH535 inhibited migration and growth of breast cancer cells. PLoS ONE 7, e44418. https://doi.org/10.1371/journal.pone.0044418
- King, T. D., Suto, M. J. and Li, Y. 2012. The Wnt/beta-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J. Cell. Biochem. 113, 13-18. https://doi.org/10.1002/jcb.23350
- Klaus, A. and Birchmeier, W. 2008. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 8, 387-398. https://doi.org/10.1038/nrc2389
- Kole, H. K., Resnick, R. J., Van Doren, M. and Racker, E. 1991. Regulation of 6-phosphofructo-1-kinase activity in ras-transformed rat-1 fibroblasts. Arch. Biochem. Biophys. 286, 586-590. https://doi.org/10.1016/0003-9861(91)90084-V
- Koppenol, W. H., Bounds, P. L. and Dang, C. V. 2011. Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337. https://doi.org/10.1038/nrc3038
- Kwon, T., Youn, H., Son, B., Kim, D., Seong, K. M., Park, S., Kim, W. and Youn, B. 2016. DANGER is involved in high glucose-induced radioresistance through inhibiting DAPK-mediated anoikis in non-small cell lung cancer. Oncotarget 7, 7193-7206.
- Lamouille, S., Xu, J. and Derynck, R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196. https://doi.org/10.1038/nrm3758
- Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2016. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget 7, 7925-7939.
- Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Yoo, M. A., Park, H. G., Han, S. I. and Kang, H. S. 2015. Dlx-2 is implicated in TGF-beta- and Wnt-induced epithelial-mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation. Int. J. Oncol. 46, 1768-1780. https://doi.org/10.3892/ijo.2015.2874
- Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G. and Kang, H. S. 2012. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 72, 3607-3617. https://doi.org/10.1158/0008-5472.CAN-12-0006
- Lee, S. Y., Jeon, H. M., Kim, C. H., Ju, M. K., Bae, H. S., Park, H. G., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis. Mol. Cancer 10, 113. https://doi.org/10.1186/1476-4598-10-113
- Lee, S. Y., Jeong, E. K., Ju, M. K., Jeon, H. M., Kim, M. Y., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2017. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer 16, 10. https://doi.org/10.1186/s12943-016-0577-4
- Liu, K., Tang, Z., Huang, A., Chen, P., Liu, P., Yang, J., Lu, W., Liao, J., Sun, Y., Wen, S., Hu, Y. and Huang, P. 2017. Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. Int. J. Oncol. 50, 252-262. https://doi.org/10.3892/ijo.2016.3774
- Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J. and Weinberg, R. A. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715. https://doi.org/10.1016/j.cell.2008.03.027
- Merlo, G. R., Zerega, B., Paleari, L., Trombino, S., Mantero, S. and Levi, G. 2000. Multiple functions of Dlx genes. Int. J. Dev. Biol. 44, 619-626.
- Mims, J., Bansal, N., Bharadwaj, M. S., Chen, X., Molina, A. J., Tsang, A. W. and Furdui, C. M. 2015. Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer. Radiat. Res. 183, 291-304. https://doi.org/10.1667/RR13828.1
- Minchenko, A., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V. and Caro, J. 2002. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. 277, 6183-6187. https://doi.org/10.1074/jbc.M110978200
- Minchenko, O., Opentanova, I. and Caro, J. 2003. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Lett. 554, 264-270. https://doi.org/10.1016/S0014-5793(03)01179-7
- Minchenko, O. H., Ogura, T., Opentanova, I. L., Minchenko, D. O., Ochiai, A., Caro, J., Komisarenko, S. V. and Esumi, H. 2005. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family overexpression in human lung tumor. Ukr. Biokhim. Zh. (1999) 77, 46-50.
- Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., Clark, L., Bayani, N., Coppe, J. P., Tong, F., Speed, T., Spellman, P. T., DeVries, S., Lapuk, A., Wang, N. J., Kuo, W. L., Stilwell, J. L., Pinkel, D., Albertson, D. G., Waldman, F. M., McCormick, F., Dickson, R. B., Johnson, M. D., Lippman, M., Ethier, S., Gazdar, A. and Gray, J. W. 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515-527. https://doi.org/10.1016/j.ccr.2006.10.008
- Okar, D. A., Manzano, A., Navarro-Sabate, A., Riera, L., Bartrons, R. and Lange, A. J. 2001. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci. 26, 30-35. https://doi.org/10.1016/S0968-0004(00)01699-6
- Okar, D. A., Wu, C. and Lange, A. J. 2004. Regulation of the regulatory enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Adv. Enzyme Regul. 44, 123-154. https://doi.org/10.1016/j.advenzreg.2003.11.006
- Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., Xu, Y., Wonsey, D., Lee, L. A. and Dang, C. V. 2000. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797-21800. https://doi.org/10.1074/jbc.C000023200
- Panganiban, G. and Rubenstein, J. L. 2002. Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371-4386.
- Peinado, H., Olmeda, D. and Cano, A. 2007. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415-428. https://doi.org/10.1038/nrc2131
- Peng, X., Gong, F., Chen, Y., Jiang, Y., Liu, J., Yu, M., Zhang, S., Wang, M., Xiao, G. and Liao, H. 2014. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-alpha-mediated signaling. Cell Death Dis. 5, e1367. https://doi.org/10.1038/cddis.2014.297
- Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S. X., Lonning, P. E., Borresen-Dale, A. L., Brown, P. O. and Botstein, D. 2000. Molecular portraits of human breast tumours. Nature 406, 747-752. https://doi.org/10.1038/35021093
- Pickup, M., Novitskiy, S. and Moses, H. L. 2013. The roles of TGFbeta in the tumour microenvironment. Nat. Rev. Cancer 13, 788-799. https://doi.org/10.1038/nrc3603
- Pohl, S. G., Brook, N., Agostino, M., Arfuso, F., Kumar, A. P. and Dharmarajan, A. 2017. Wnt signaling in triple-negative breast cancer. Oncogenesis 6, e310. https://doi.org/10.1038/oncsis.2017.14
- Polyak, K. and Weinberg, R. A. 2009. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265-273. https://doi.org/10.1038/nrc2620
- Puisieux, A., Brabletz, T. and Caramel, J. 2014. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488-494. https://doi.org/10.1038/ncb2976
- Ros, S. and Schulze, A. 2013. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 1, 8. https://doi.org/10.1186/2049-3002-1-8
- Sattler, U. G., Meyer, S. S., Quennet, V., Hoerner, C., Knoerzer, H., Fabian, C., Yaromina, A., Zips, D., Walenta, S., Baumann, M. and Mueller-Klieser, W. 2010. Glycolytic metabolism and tumour response to fractionated irradiation. Radiother. Oncol. 94, 102-109. https://doi.org/10.1016/j.radonc.2009.11.007
- Schulze, A. and Harris, A. L. 2012. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364-373. https://doi.org/10.1038/nature11706
- Singh, A. and Settleman, J. 2010. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751. https://doi.org/10.1038/onc.2010.215
- Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Thorsen, T., Quist, H., Matese, J. C., Brown, P. O., Botstein, D., Lonning, P. E. and Borresen-Dale, A. L. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869-10874. https://doi.org/10.1073/pnas.191367098
- Tang, P., Huang, H., Chang, J., Zhao, G. F., Lu, M. L. and Wang, Y. 2013. Increased expression of DLX2 correlates with advanced stage of gastric adenocarcinoma. World J. Gastroenterol. 19, 2697-2703. https://doi.org/10.3748/wjg.v19.i17.2697
- Thiery, J. P. and Sleeman, J. P. 2006. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131-142. https://doi.org/10.1038/nrm1835
- Tsai, J. H. and Yang, J. 2013. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27, 2192-2206. https://doi.org/10.1101/gad.225334.113
- Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
- Wang, S. S., Jiang, J., Liang, X. H. and Tang, Y. L. 2015. Links between cancer stem cells and epithelial-mesenchymal transition. Onco Targets Ther. 8, 2973-2980.
- Wang, Y., Shi, J., Chai, K., Ying, X. and Zhou, B. P. 2013. The role of snail in EMT and tumorigenesis. Curr. Cancer Drug Targets 13, 963-972. https://doi.org/10.2174/15680096113136660102
- Warburg, O. 1956. On respiratory impairment in cancer cells. Science 124, 269-270.
- Yalcin, A., Solakoglu, T. H., Ozcan, S. C., Guzel, S., Peker, S., Celikler, S., Balaban, B. D., Sevinc, E., Gurpinar, Y. and Chesney, J. A. 2017. 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase-3 is required for transforming growth factor beta1-enhanced invasion of Panc1 cells in vitro. Biochem. Biophys. Res. Commun. 484, 687-693. https://doi.org/10.1016/j.bbrc.2017.01.178
- Yalcin, A., Telang, S., Clem, B. and Chesney, J. 2009. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp. Mol. Pathol. 86, 174-179. https://doi.org/10.1016/j.yexmp.2009.01.003
- Yan, Z. H., Bao, Z. S., Yan, W., Liu, Y. W., Zhang, C. B., Wang, H. J., Feng, Y., Wang, Y. Z., Zhang, W., You, G., Zhang, Q. G. and Jiang, T. 2013. Upregulation of DLX2 confers a poor prognosis in glioblastoma patients by inducing a proliferative phenotype. Curr. Mol. Med. 13, 438-445.
- Yao, H., He, G., Yan, S., Chen, C., Song, L., Rosol, T. J. and Deng, X. 2016. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8, 1913-1924.
- Yilmaz, M., Maass, D., Tiwari, N., Waldmeier, L., Schmidt, P., Lehembre, F. and Christofori, G. 2011. Transcription factor Dlx2 protects from TGFbeta-induced cell-cycle arrest and apoptosis. EMBO J. 30, 4489-4499. https://doi.org/10.1038/emboj.2011.319
- Zhao, L., Ji, G., Le, X., Wang, C., Xu, L., Feng, M., Zhang, Y., Yang, H., Xuan, Y., Yang, Y., Lei, L., Yang, Q., Lau, W. B., Lau, B., Chen, Y., Deng, X., Yao, S., Yi, T., Zhao, X., Wei, Y. and Zhou, S. 2017. Long noncoding RNA LINC00092 acts in cancer-associated fibroblasts to drive glycolysis and progression of ovarian cancer. Cancer Res. 77, 1369-1382. https://doi.org/10.1158/0008-5472.CAN-16-1615
- Zhao, Y., Butler, E. B. and Tan, M. 2013. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4, e532. https://doi.org/10.1038/cddis.2013.60
- Zhou, M., Zhao, Y., Ding, Y., Liu, H., Liu, Z., Fodstad, O., Riker, A. I., Kamarajugadda, S., Lu, J., Owen, L. B., Ledoux, S. P. and Tan, M. 2010. Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol. Cancer 9, 33.