DOI QR코드

DOI QR Code

A Functional Analysis of OsCPK11, a Calcium-dependent Protein Kinase (CDPK) Gene in Rice

벼의 칼슘-의존성 단백질 카이네즈 유전자인 OsCPK11의 기능적 분석

  • Lee, Su-Hee (Iwol Middle School) ;
  • Lee, Jeong-Eun (Keoje Girls' Middle School) ;
  • Day, Philip (Department of Mathmatics and Natural Sciences, Penn State Altoona) ;
  • Gilroy, Simon (Department of Botany, University of Wisconsin-Madison) ;
  • Kim, Sung-Ha (Department of Biology Education, Korea National University of Education)
  • Received : 2016.09.19
  • Accepted : 2017.10.31
  • Published : 2017.11.30

Abstract

CDPKs have pivotal roles in plant $Ca^{2+}$-mediated transduction signaling. A total of 29 CDPK genes have been identified in rice (Oryza sativa L.), but their key functions have not been completely noted. This study focused on the OsCPK11 gene, which has not been studied, to determine its functional characteristics. A study of tissue-specific expressions revealed that the OsCPK11 gene is expressed in young leaves, mature leaves and flowers of rice. An expression of the gene was also confirmed in gibberellin-treated aleurone layers of rice. Regarding the phenotypic characteristics of Tos17-inserted OsCPK11 mutants, the heights of the mutants were not distinguishable from the heights of wild type plants, but the number of caryopses and the caryopses' weights were significantly statistically different. In addition, many grains of the mutants had white belly materials in their endosperm. The cDNA of the OsCPK11 was cloned, and an OsCPK11 protein of about 60.5 kD was obtained by using a GST affinity chromatography and an SDS-PAGE. An analysis of the amino-acid sequence of the protein indicated that the OsCPK11 protein has the structural characteristics of typical CDPKs. The results provided useful information about the functions of the OsCPK11 gene and further noted the roles CDPKs have in $Ca^{2+}$-mediated signaling in plants.

Calcium-dependent protein kinases (CDPKs)는 칼슘 이온을 매개로 한 신호전달 경로에서 중요한 역할을 한다. 벼(Oryza sativa)에는 29개의 CDPKs가 확인되었지만 그들의 기능은 완벽히 밝혀지지 않았다. 이 연구는 OsCPK11 유전자에 초점을 맞춰 그것의 기능적인 특징을 조사하였다. 벼의 어린 잎, 성장한 잎, 꽃에서 OsCPK11 유전자의 조직-특이적 발현이 확인되었고, 지베렐린이 처리된 벼의 호분층에서도 이 유전자의 발현을 확인할 수 있었다. Tos-17이 삽입된 oscpk11의 표현형에서 돌연변이체 각각의 키는 야생형과 구분되지 않았지만, 영과의 수나 무게는 통계적으로 유의미한 차이가 있었다. 덧붙여 많은 돌연변이체 낟알의 배젖에서 white belly materials이 확인되었다. OsCPK11의 cDNA가 cloning되었고, 약 60.5 kD인 OsCPK11 단백질이 GST affinity chromatography와 SDS-PAGE에 의해 얻어졌다. 아미노산 서열 분석을 통해 OsCPK11이 전형적인 CDPKs의 구조적 특징을 가짐을 알 수 있었다. 이 결과는 OsCPK11유전자의 기능과 식물에서 칼슘 이온을 매개로 한 신호전달 경로에 CDPK 역할의 유용한 정보를 제공해줄 것이다.

Keywords

References

  1. Abo-El-Saad, M. and Wu, R. 1995. A rice membrane calcium-dependent protein kinase is induced by gibberellin in rice leaf sheath. Plant Mol. Biol. 55, 541-552.
  2. Anil, V. S. and Rao, S. K. 2000. Calcium-mediated signalling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol. 123, 1301-1311. https://doi.org/10.1104/pp.123.4.1301
  3. Anil, V. S., Harmon, A. C. and Rao, S. K. 2000. Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiol. 122, 1035-1043. https://doi.org/10.1104/pp.122.4.1035
  4. Asano, T., Kunieda, N., Omura, Y., Ibe, H., Kawasaki, T., Takano, M., Sato, M., Furuhashi, H., Mujin, T., Takaiwa, F., Wu, C., Tada, Y., Satozawa, T., Sakamoto, M. and Shimada, H. 2002. Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14, 619-628. https://doi.org/10.1105/tpc.010454
  5. Asano, T., Tanaka, N., Yang, G., Hayash, N. and Komatsu, S. 2005. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: Comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol. 46, 356-366. https://doi.org/10.1093/pcp/pci035
  6. Asano, T., Hakata, M., Nakamura, H., Aoki, N., Komatsu, S., Ichikawa, H., Hirochika, H. and Ohsugi, R. 2011. Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol. Biol. 75, 179-191. https://doi.org/10.1007/s11103-010-9717-1
  7. Berridge, M. J., Lipp, P. and Bootman, M. D. 2000. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21.
  8. Bethke, P. C., Schuurink, R. and Jones, R. L. 1997. Hormonal signaling in cereal aleurone. J. Exp. Bot. 48, 1337-1356. https://doi.org/10.1093/jxb/48.7.1337
  9. Bush, D. S. and Jones, R. L. 1988. Cytoplasmic calcium and ${\alpha}$-amylase secretion from barley aleurone protoplasts. Eur. J. Cell Biol. 46, 466-469.
  10. Bush, D. S. 1995. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 95-122. https://doi.org/10.1146/annurev.pp.46.060195.000523
  11. Cheng, S. H., Willmann, M. R., Chen, H. C. and Sheen, J. 2002. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129, 469-485. https://doi.org/10.1104/pp.005645
  12. Cheong, Y. H., Kim, K. N., Pandey, G. K., Gupta, R., Granta, J. J. and Luan, S. 2003. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15, 1833-1845. https://doi.org/10.1105/tpc.012393
  13. Chin, D. and Means, A. R. 2000. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 10, 322-328. https://doi.org/10.1016/S0962-8924(00)01800-6
  14. Christodoulou, J., Malmendal, A., Harper, J. F. and Chazin, W. J. 2004. Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase. J. Biol. Chem. 279, 29092-29100. https://doi.org/10.1074/jbc.M401297200
  15. Cohen, S. N., Chang, A. C. Y. and Hsu, L. 1972. Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proc. Nat. Acad. Sci. USA 69, 2110-2114. https://doi.org/10.1073/pnas.69.8.2110
  16. Day, P. M. 2008. Phosphatidylinositol 3-kinase is a positive regulator of gibberellin signaling. Ph.D. thesis, Penn State University, USA.
  17. Ellard-lvey, M., Hopkins, P. B., White, T. J. and Lomax, T. L. 1999. Cloning, expression and N-terminal myristoylation of CpCPK, a calcium-dependent protein kinase from zucchini (Curbita pepo L). Plant Mol. Biol. 39, 199-208. https://doi.org/10.1023/A:1006125918023
  18. Evans, N. H., McAinsh, M. R. and Hetherington, A. M. 2001. Calcium oscillations in higher plants. Curr. Opin. Plant Biol. 4, 415-420. https://doi.org/10.1016/S1369-5266(00)00194-1
  19. Harmon, A. C., Gribskov, M. and Harper, J. F. 2000. CDPKs-a kinase for every $Ca^{2+}$ signal? Trends Plant Sci. 5, 154-159. https://doi.org/10.1016/S1360-1385(00)01577-6
  20. Harper, J. F., Sussman, M. R., Schaller, G. E., Putnam-Evans, C., Charbonneau, H. and Harmon, A. 1991. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252, 951-954. https://doi.org/10.1126/science.1852075
  21. Harper, J. F. 2001. Dissecting calcium oscillators in plant cells. Trends Plant Sci. 6, 395-397. https://doi.org/10.1016/S1360-1385(01)02023-4
  22. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. and Kanada, M. 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93, 7783-7788. https://doi.org/10.1073/pnas.93.15.7783
  23. Hernandez, S., Hardin, S., Clouse, S., Kieber, J. and Huber, S. 2004. Identification of a new motif for CDPK phosphorylation in vitro that suggest ACC synthase may be a CDPK substrate. Arch. Biochem. Biophys. 428, 81-91. https://doi.org/10.1016/j.abb.2004.04.025
  24. Hrabak, E. M., Chan, C. W., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., Kudla, J., Luan, S., Nimmo, H. G., Sussman, M. R., Thomas, M., Walker-Simmons, K., Zhu, J. K. and Harmon, A. C. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132, 666-680. https://doi.org/10.1104/pp.102.011999
  25. International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature 436, 793-800. https://doi.org/10.1038/nature03895
  26. Kang, H., Park, S., Matsuoka, M. and An, G. 2005. Whitecore endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPKB). Plant J. 42, 901-911. https://doi.org/10.1111/j.1365-313X.2005.02423.x
  27. Knight, H. and Knight, M. R. 2001. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6, 262-267. https://doi.org/10.1016/S1360-1385(01)01946-X
  28. Kolukisaoglu, U., Weinl, S., Blazevic, D., Batistic, O. and Kudla, J. 2004. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signalling networks. Plant Physiol. 134, 43-58. https://doi.org/10.1104/pp.103.033068
  29. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680-685.
  30. Lehninger, A. L., Nelson, D. L. and Cox, M. M. 1993. Principles of biochemistry, pp. 772, 2nd ed., Worth Publishers, NY, USA.
  31. Lee, S. H. 2009. Functional characterization of OsCPK11, a calcium-dependent protein kinase gene from rice and its cDNA cloning. Master's thesis. Korea National University of Education, Chungbuk, Korea.
  32. Lee, J. E. 2008. Functional analysis of OsCPK11, a calciumdependent protein kinase gene from rice. Master's thesis. Korea National University of Education, Chungbuk, Korea.
  33. Li, J., Lee, Y. R. and Assmann S. M. 1998. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol. 116, 785-795. https://doi.org/10.1104/pp.116.2.785
  34. Lu, S. X. and Hrabak, E. M. 2002. An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol. 128, 1008-1021. https://doi.org/10.1104/pp.010770
  35. Maria, K. and Grazyna, M. 2007. Structure and functions of plant calcium-dependent protein kinases. Acta Biochim. Polonica 54, 219-233.
  36. Martin, M. L. and Busconi, L. 2000. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J. 24, 429-435. https://doi.org/10.1046/j.1365-313x.2000.00889.x
  37. Nelson, D. L. and Cox, M. M. 2013. Lehninger principles of biochemistry, 6th ed., Freeman and Company, NY, USA.
  38. Nelson, L. E. and Pan, D. 1995. Starch synthesis in maize endosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 475-496. https://doi.org/10.1146/annurev.pp.46.060195.002355
  39. Racies, M., Gargantini, P. R., Chinchilla, D., Crespi, M., Tellez-Inon, M. T. and Ulloa, R. M. 2003. Regulation of CDPK isoforms during tuber development. Plant Mol. Biol. 52, 1011-1024. https://doi.org/10.1023/A:1025478315648
  40. Ritchie, S. and Gilroy, S. 1998. Gibberellins: regulating genes and germination. New Phytol. 140, 363-383. https://doi.org/10.1046/j.1469-8137.1998.00299.x
  41. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K. and Izuki, K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23, 319-327. https://doi.org/10.1046/j.1365-313x.2000.00787.x
  42. Sanders, D., Brownlee, C. and Harper, J. F. 1999. Communicating with calcium. Plant Cell 11, 691-706. https://doi.org/10.1105/tpc.11.4.691
  43. Sanders, D., Pelloux, J., Brownlee, C. and Harper, J. F. 2002. Calcium at the crossroads of signalling. Plant Cell 14 (Suppl), S401-S417. https://doi.org/10.1105/tpc.002899
  44. Sasaki, T. and Burr, B. 2000. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3, 138-141. https://doi.org/10.1016/S1369-5266(99)00047-3
  45. Satoh, H. and Omura, T. 1981. New endosperm mutations induced by chemical mutagen in rice, Oryza sativa L. Jap. J. Breed. 31, 316-326. https://doi.org/10.1270/jsbbs1951.31.316
  46. Shen, W., Tao, G. Q., Li, D. C., Zhu, X. G., Bai, X. and Cai, B. 2008. Inhibition of pancreatic carcinoma cell growth in vitro by DPK4 gene transfection. World J. Gastroenterol. 14, 6254-6260. https://doi.org/10.3748/wjg.14.6254
  47. Taiz, L., Zeiger, E., Moller, I. M. and Murphy, A. 2015. Plant physiology and development, 6th ed., Sinauer Associates, MA, USA.
  48. Takada, A., Berezikov, E., Yamashita, Y., Laqos-Quintana, M., Kloosterman, W. P., Enomoto, M., Hatanaka, H., Fujiwara, S., Watanabe, H., Soda, M., Choi, Y. L., Plasterk, R. H., Cuppen, E. and Mano, H. 2006. Mouse microRNA profiles determined with a new and sensitive cloning method. Nucl. Acids Res. 34, e115. https://doi.org/10.1093/nar/gkl653
  49. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  50. Trewavas, A. J. and Malho, R. 1998. $Ca^{2+}$ signalling in plant cells: the big network! Curr. Opin. Plant Biol. 1, 428-433. https://doi.org/10.1016/S1369-5266(98)80268-9
  51. Wan, B., Lin, Y. and Mou, T. 2007 Expression of rice $Ca^{2+}$-dependent protein kinases genes under different environmental stresses. FEBS Lett. 581, 1179-1189. https://doi.org/10.1016/j.febslet.2007.02.030
  52. Yang, G., Shen, S., Yang, S. and Komatsu, S. 2003. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin. Plant Physiol. Biochem. 41, 369-374. https://doi.org/10.1016/S0981-9428(03)00032-9
  53. Ye, S., Wang, L., Xie, W., Wan, B., Li, X. and Lin, Y. 2009. Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. ssp. indica). Plant Mol. Biol. 70, 311-325 . https://doi.org/10.1007/s11103-009-9475-0
  54. Zhang, X. and Chollet, R. 1997. Seryl-phosphorylation of soybean nodule sucrose synthase (nodulin-100) by a $Ca^{2+}$-dependent protein kinase. FEBS Lett. 410, 126-130. https://doi.org/10.1016/S0014-5793(97)00537-1
  55. Zhang, M., Liang, S. and Lu, Y. T. 2005. Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Biochim. Biophys. Acta 1729, 174-185. https://doi.org/10.1016/j.bbaexp.2005.04.006
  56. Zhang, T., Wang, Q., Chen, X., Tian, C., Wang, X., Xing, T., Li, Y. and Wang, Y. 2005. Cloning and biochemical properties of CDPK gene OsCDPK14 from rice. J. Plant Physiol. 162, 1149-1159. https://doi.org/10.1016/j.jplph.2004.12.010
  57. Zhijun, X., Shulan, Z. and Xhuo, Z. 2007 Expression and significance of the protein and mRNA of metastasis suppressor gene ME491/CD63 and integrin alpha5 in ovarian cancer tissues. Eur. J. Gynaecol. Oncol. 28, 179-183.