DOI QR코드

DOI QR Code

An Improved Method of Developing Safety-Related Application Conditions for Safety Design of Railway Signalling Systems

철도신호시스템의 안전 설계를 위한 개선된 안전성 적용 조건 도출 방법

  • 백영구 (아주대학교 시스템공학과) ;
  • 이재천 (아주대학교 시스템공학과)
  • Received : 2017.09.25
  • Accepted : 2017.11.03
  • Published : 2017.11.30

Abstract

According to the railway accident statistics in recent years, the frequency of accidents has been significantly reduced, due to the advance of related technologies and the establishment of safety information management systems. Nonetheless, accidents due to errors in the operation and maintenance phase and faults in safety design continue to occur. Therefore, to prevent accidents, guidelines for the safety design and manufacture of railway vehicles were established, and a request for the independent safety evaluation of safety designs was made. To respond to this, rail system developers must prepare safety cases as a safety activity product. One of the main items of these safety cases is the safety-related application conditions (SRAC) and, thus, the question of how to develop these SRAC is an important one. The SRAC studies reported so far focused only on the simplicity of the derivation procedure and the specific safety activities in the design phase. This method seems to have the advantage of quickly deriving SRAC items. However, there is a risk that some important safety-related items may be missing. As such, this paper proposes an improved method of developing the SRAC based on the idea of performing both the safety design and safety evaluation activities throughout the whole system lifecycle. In this way, it is possible to develop and manage the SRAC more systematically. Especially, considering the SRAC from the initial stage of the design can allow the safety requirements to be reflected to a greater extent. Also, an application case study on railway signaling systems shows that the method presented herein can prevent the omission of important safety-related items, due to the consideration of the SRAC throughout the system lifecycle.

철도 분야에서의 최근 수년간의 사고 통계에 의하면, 관련 기술 발전과 안전정보 관리시스템의 구축으로 사고발생 빈도가 현저히 줄고 있다. 그럼에도 불구하고 운영 및 유지보수에서의 오류와 안전설계에서의 결함으로 인한 사고는 지속적으로 발생하고 있다. 이에 따라 철도사고를 예방하기 위해, 철도차량 개발 시 안전성을 고려하는 설계 및 제작을 위한 지침이 작성되었고, 이와 더불어 안전 설계에 대한 독립적인 안전성평가의 수행에 대한 요구가 제시되었다. 이를 충족시키기 위해 철도시스템 개발업체는 안전성 활동 산출물인 Safety Case를 작성해야 한다. 이에 따라 Safety Case의 주요 항목 중 하나인 안전성 적용조건 (SRAC: Safety-Related Application Conditions)의 도출 및 관리에 대한 중요성이 커지고 있다. 지금까지 보고된 SRAC에 관한 연구 결과에서는 도출 절차의 간략성과 설계단계에서의 특정 안전성 활동 분석 방법에만 초점을 맞추고 있다. 이러한 방법은SRAC 항목 들을 빠르게 도출 할 수 있는 장점이 있지만, 안전성 측면에서 고려되어야 할 중요한 항목들이 누락될 위험이 존재한다. 이러한 문제를 해결하기 위하여 본 논문에서는 시스템 수명주기 전반에 걸쳐 안전성 설계 및 안전성 평가 활동을 수행하고 이를 기반으로 SRAC의 도출방법의 개선 방안을 제안한다. 이렇게 함으로써 SRAC를 보다 체계적으로 도출 및 관리를 수행할 수 있는데, 특히 설계 초기단계에서부터 SRAC를 고려함으로써 안전성 요구사항을 최대한 반영한 안전설계가 가능하다. 또한 철도신호시스템에 대한 적용사례 연구를 통하여 본 논문에서 제시하는 방법이 시스템 수명주기 전체에 걸쳐 SRAC를 고려함으로써 중요한 안전성 관련 항목들의 누락이 줄어들 수 있음을 보여준다.

Keywords

References

  1. C. A. Ericson, Hazard Analysis Techniques for System Safety. 1st ed. Hoboken, MA: John Wiley & Sons, Inc., 2005.
  2. Korea Transportation Safety Authority, Transportation Accident Status and Statistical Analysis on 2016 Year, pp. 04-14, Korea Transportation Safety Authority, Korea, Analysis Report, Apr. 2016.
  3. Korea Transportation Safety Authority, Transportation Accident Status and Statistical Analysis on the First Half of 2017 Year, pp. 04-11, Korea Transportation Safety Authority, Sep. 2017.
  4. Rolling Stock Maintenance Department, Rolling Stock RAMS Operation Guideline, pp. 1-7, Ministry of the interior and Safety, Korea, Regulations, Dec. 2014.
  5. Korea Railroad Research Institute, Notice to Tenderers for Independent Safety Assessment on 400km/h Railway Transponder, pp.21, Jun. 2014.
  6. D. W. Kim, K. Y. Song, Application on train control system certified by Independent Safety Assessment to suseo high speed train, pp.1, Korea Rail Network Authority, 2016.
  7. Railway Applications - Communications, Signalling and Processing Systems - Safety Related Electronic Systems for Signalling, International Electrotechnical Commission Standard, IEC 62425, 2007.
  8. B. Friedemann, F. Ulrich, and G. Huw, "Safety-related application conditions - A balance between safety relevance and handicaps for applications," Proc. Computer Safety, Reliability, and Security: 28th International Conference, SAFECOMP 2009, pp. 32-45, Sep. 2009.
  9. Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS), International Electrotechnical Commission Standard, IEC 62278, 2002.
  10. B. John, R. Roger, H. Ibrahim, B. Ben, B. John, H. Dave, J. Peter, M. Helen, P. Robert, "Safety cases and their role in ISO 26262 functional safety assessment," Proc. Computer Safety, Reliability, and Security: 32nd International Conference, SAFECOMP 2013, pp. 154-165, Sep. 2013.
  11. J. Westman, M. Nyberg, M. Torngren, "Structuring safety requirements in ISO 26262 using contract theory," Proc. Computer Safety, Reliability, and Security: 32nd International Conference, SAFECOMP 2013, pp. 166-177, Sep. 2013.
  12. M. Rausand, I. B. Utne, "Product safety - Principles and practices in a life cycle perspective," Safety Science, vol. 47, no. 7, pp. 939-947, Oct. 2009. DOI: https://doi.org/10.1016/j.ssci.2008.10.004
  13. O. Nordland, "Safety case categories - Which one when?," Proc. Current Issues in Safety-Critical Systems: Proceedings of the Eleventh Safety-critical Systems Symposium, pp. 163-172, Feb. 2003.
  14. Public Policy Institute for People, Why the accident at Gui Station was happened? Organizational thinking approach, pp. 95-102, Public Transportation Network, Dec. 2016.
  15. European Committee for Electrotechnical Standardization, Railway applications - Communication, signalling and processing systems - Application guide for EN 50129 - Part 2: Safety assurance, European Committee for Electrotechnical Standardization, CLC/TR 50506-2, Dec. 2009.