DOI QR코드

DOI QR Code

Antioxidant Activities and Protective Effects of Hot Water Extract from Curcuma longa L. on Oxidative Stress-Induced C2C12 Myoblasts

강황 열수 추출물의 항산화 활성 및 C2C12 Myoblasts의 산화적 손상에 대한 보호 효과

  • Jeong, Hye-Jin (Division of Food and Nutrition, Chonnam National University) ;
  • Kim, Shintae (Division of Food and Nutrition, Chonnam National University) ;
  • Park, Jeongjin (Division of Food and Nutrition, Chonnam National University) ;
  • Kim, Ki Hong (Jeonnam Institute for Regional Program Evaluation) ;
  • Kim, Kyungmi (Department of Biofood Analysis, Korea Polytechnic Colleges) ;
  • Jun, Woojin (Division of Food and Nutrition, Chonnam National University)
  • 정혜진 (전남대학교 식품영양과학부) ;
  • 김신태 (전남대학교 식품영양과학부) ;
  • 박정진 (전남대학교 식품영양과학부) ;
  • 김기홍 ((재)전남지역사업평가단) ;
  • 김경미 (한국폴리텍대학 바이오식품분석학과) ;
  • 전우진 (전남대학교 식품영양과학부)
  • Received : 2017.08.10
  • Accepted : 2017.09.12
  • Published : 2017.11.30

Abstract

The aim of this study was to investigate the antioxidant activities and protective effects of hot water extract from Curcuma longa L. (CLW) on oxidative stress-induced C2C12 myoblasts. Antioxidant activities of CLW were evaluated based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities. Protective effects of CLW on oxidative stress-induced C2C12 myoblasts were determined based on cytotoxicity, $H_2O_2$ protective activity, and intracellular reactive oxygen species (ROS) level. DPPH and ABTS radical scavenging activities represented by $SC_{50}$ were $188.5{\pm}3.0{\mu}g/mL$ and $92.0{\pm}0.9{\mu}g/mL$, respectively. Using C2C12 myoblasts, CLW treatment increased cell viability against oxidative stress-induced cell death. Further, CLW treatment reduced the intracellular ROS level in cells treated with $H_2O_2$. These results suggest that CLW might have the capability to protect oxidative stress-induced C2C12 myoblasts.

본 연구에서는 강황 열수 추출물의 항산화 활성 및 산화적 스트레스에 대한 보호 효과를 확인하고자 하였다. 항산화 활성을 확인하기 위해 총 페놀성 화합물 함량, 총 플라보노이드 함량 및 라디칼 소거능을 측정하였다. 강황 열수 추출물의 총 페놀성 화합물 및 플라보노이드 함량은 각각 $2,474.4{\pm}31.9mg$ GAE/100 g 및 $892.1{\pm}21.2mg$ CE/100 g으로 나타났다. 강황 열수 추출물의 라디칼 소거능은 DPPH 및 ABTS 라디칼을 이용하여 측정하였다. 실험 결과 DPPH 및 ABTS 라디칼 소거능을 $SC_{50}$ 값으로 계산하였을 때 각각 $188.5{\pm}3.0{\mu}g/mL$$92.0{\pm}0.9{\mu}g/mL$로 나타났다. 이러한 라디칼 소거능에는 강황 열수 추출물에 함유되어 있는 총 페놀성 화합물 및 플라보노이드가 영향을 미쳤을 것이라고 판단된다. C2C12 myoblast에 강황 열수 추출물을 처리하였을 때 $1,000{\mu}g/mL$ 농도까지 세포 독성이 나타나지 않음을 확인하였으며, 안전성이 확인된 $500{\mu}g/mL$ 농도까지 실험을 진행하였다. 강황 열수 추출물의 $H_2O_2$에 대한 보호 효과를 측정한 결과 강황 열수 추출물을 처리하였을 때 농도 의존적으로 보호 효과가 나타나는 것을 확인할 수 있었다. 또한, $H_2O_2$ 처리 후 DCF-DA 방법을 이용하여 세포 내 활성산소종(ROS) 수준을 측정한 결과 강황 열수 추출물을 처리하였을 때 세포 내 ROS 수준이 유의적으로 감소하는 것을 확인하였다. 이상의 결과로부터 강황 열수 추출물은 항산화 활성을 나타냈으며, C2C12 myoblast에 $H_2O_2$로 유도된 산화적 스트레스를 감소시키는 효과를 나타내는 것으로 생각된다.

Keywords

References

  1. Han MH, Park C, Lee DS, Hong SH, Choi IW, Kim GY, Choi SH, Shim JH, Chae JI, Yoo YH, Choi YH. 2017. Cytoprotective effects of esculetin against oxidative stress are associated with the upregulation of Nrf2-mediated NQO1 expression via the activation of the ERK pathway. Int J Mol Med 39: 380-386. https://doi.org/10.3892/ijmm.2016.2834
  2. Terrill JR, Radley-Crabb HG, Iwasaki T, Lemckert FA, Arthur PG, Grounds MD. 2013. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J 280: 4149-4164. https://doi.org/10.1111/febs.12142
  3. Filomeni G, De Zio D, Cecconi F. 2015. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22: 377-388. https://doi.org/10.1038/cdd.2014.150
  4. Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. 2014. Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3: 6. https://doi.org/10.1186/2046-2395-3-6
  5. Yoon BR, Kim YH, Lee JS, Hong HD, Rhee YK, Cho CW, Kim YC, Lee OH. 2013. Protective effect of ferments of hot-water extract mixture from Rhodiola sachalinensis and red ginseng on oxidative stress-induced C2C12 myoblast. Korean J Food Nutr 26: 485-491. https://doi.org/10.9799/ksfan.2013.26.3.485
  6. Sabourin LA, Rudnicki MA. 2000. The molecular regulation of myogenesis. Clin Genet 57: 16-25.
  7. Fan X, Hussien R, Brooks GA. 2010. $H_{2}O_{2}$-induced mitochondrial fragmentation in C2C12 myocytes. Free Radic Biol Med 49: 1646-1654. https://doi.org/10.1016/j.freeradbiomed.2010.08.024
  8. Kerasioti E, Stagos D, Priftis A, Aivazidis S, Tsatsakis AM, Hayes AW, Kouretas D. 2014. Antioxidant effects of whey protein on muscle C2C12 cells. Food Chem 155: 271-278. https://doi.org/10.1016/j.foodchem.2014.01.066
  9. Goutzourelas N, Stagos D, Spanidis Y, Liosi M, Apostolou A, Priftis A, Haroutounian S, Spandidos DA, Tsatsakis AM, Kouretas D. 2015. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells. Mol Med Rep 12: 5846-5856. https://doi.org/10.3892/mmr.2015.4216
  10. Meng SJ, Yu LJ. 2010. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 11: 1509-1526. https://doi.org/10.3390/ijms11041509
  11. Ammon HP, Wahl MA. 1991. Pharmacology of Curcuma longa. Planta Med 57: 1-7. https://doi.org/10.1055/s-2006-960004
  12. Araujo CC, Leon LL. 2001. Biological activities of Curcuma longa L.. Mem Inst Oswaldo Cruz 96: 723-728. https://doi.org/10.1590/S0074-02762001000500026
  13. Kim Y, You Y, Yoon HG, Lee YH, Kim K, Lee J, Kim MS, Kim JC, Jun W. 2014. Hepatoprotective effects of fermented Curcuma longa L. on carbon tetrachloride-induced oxidative stress in rats. Food Chem 151: 148-153. https://doi.org/10.1016/j.foodchem.2013.11.058
  14. Kim JH, Kim OK, Yoon HG, Park J, You Y, Kim K, Lee YH, Choi KC, Lee J, Jun W. 2016. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats. Food Nutr Res 60: 30428. https://doi.org/10.3402/fnr.v60.30428
  15. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L. 2015. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 10: 1615-1623. https://doi.org/10.3892/etm.2015.2749
  16. Duval B, Shetty K. 2001. The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J Food Biochem 25: 361-377. https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  17. Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  18. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Sakihama Y, Cohen MF, Grace SC, Yamasaki H. 2002. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177: 67-80. https://doi.org/10.1016/S0300-483X(02)00196-8
  21. Heim KE, Tagliaferro AR, Bobilya DJ. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13: 572-584. https://doi.org/10.1016/S0955-2863(02)00208-5
  22. Min KC, Jhoo JW. 2013. Antioxidant activity and inhibitory effect of Taraxacum officinale extracts on nitric oxide production. Korean J Food Sci Technol 45: 206-212. https://doi.org/10.9721/KJFST.2013.45.2.206
  23. Lee KW, Kim YS, Park PJ, Jeong JH. 2014. Comparison of effect of water and ethanolic extract from roots and leaves of Allium hookeri. J Korean Soc Food Sci Nutr 43: 1808-1816. https://doi.org/10.3746/jkfn.2014.43.12.1808
  24. Kim YS, Hwang JW, Park PJ, Jeong JH. 2014. Antioxidant activity and protective effects of extracts from Chrysanthemum boreale on t-BHP induced oxidative stress in Chang cells. J Korean Soc Food Sci Nutr 43: 60-66. https://doi.org/10.3746/jkfn.2014.43.1.060
  25. Seo JE, Hwang ES, Kim GH. 2011. Antioxidative and differentiation effects of Artemisia capillaris T. extract on hydrogen peroxide-induced oxidative damage of MC3T3-E1 osteoblast cells. J Korean Soc Food Sci Nutr 40: 1532-1536. https://doi.org/10.3746/jkfn.2011.40.11.1532
  26. Yoshikawa A, Saito Y, Maruyama K. 2006. Lignan compounds and 4,4'-dihydroxybiphenyl protect C2C12 cells against damage from oxidative stress. Biochem Biophys Res Commun 344: 394-399. https://doi.org/10.1016/j.bbrc.2006.03.107
  27. Kang JS, Han MH, Kim GY, Kim CM, Chung HY, Hwang HJ, Kim BW, Choi YH. 2015. Schisandrae semen essential oil attenuates oxidative stress-induced cell damage in C2C12 murine skeletal muscle cells through Nrf2-mediated upregulation of HO-1. Int J Mol Med 35: 453-459. https://doi.org/10.3892/ijmm.2014.2028
  28. Keston AS, Brandt R. 1965. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11: 1-5. https://doi.org/10.1016/0003-2697(65)90034-5
  29. Gomes A, Fernandes E, Lima JL. 2005. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65: 45-80. https://doi.org/10.1016/j.jbbm.2005.10.003