DOI QR코드

DOI QR Code

뒷굽 길이가 짧은 캔틸레버 옹벽의 Coulomb 토압 산정에 대한 영향 인자 분석

Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure of Cantilever Retaining Wall with a Short Heel

  • 유건선 (한라대학교 토목공학과)
  • 투고 : 2017.08.28
  • 심사 : 2017.11.09
  • 발행 : 2017.11.30

초록

본 연구에서는 사질토 뒷채움재의 캔틸레버 옹벽에서 뒷굽 끝단 연직면에 작용하는 주동토압을 산정하는 방법을 제안하였다. 캔틸레버 옹벽에서 뒷굽길이에 따른 전단 영역의 변화는 벽체의 벽마찰력, 뒷채움 경사에 따라 뒷굽 끝단 연직면에 작용하는 주동토압에 영향을 준다. 뒷굽길이에 따라 변하는 파괴면각도를 가정하여 토압을 산정하는 한계평형법은 적용하기에 매우 복잡하므로 본 연구에서는 한계해석법을 사용하여 토압을 구하였다. 한계해석법으로 뒷굽길이에 따라 실제 파괴면각도가 고려된 토압을 정확히 산정하고, 이로부터 뒷굽 끝단 연직면에 작용하는 수평토압과 연직토압을 분석하였다. 본 연구결과에 의하면, 뒷굽길이가 짧아짐에 따라 내측 파괴면 경사각은 이론식보다 증가한 반면에 외측 파괴면 경사각은 영향을 받지 않았다. 뒷굽 끝단의 연직면에 작용하는 배면마찰각은 지표면 경사각과 벽면마찰각 사이의 값을 나타내었으며, 주동토압 또한 감소하였다. 최종적으로 상대적인 뒷굽길이와 뒷굽 끝단의 연직면에 작용하는 마찰각(연직토압/수평토압의 비)의 상관관계를 사용함으로써 Coulomb 토압을 간편하게 산정할 수 있도록 하였다.

In this study, the calculation method of the active earth pressure acting on the imaginary vertical plane at the end of the heel of the wall is proposed. For cantilever retaining wall, a change of shear zone behind the wall affects the earth pressure in the vertical plane at the end of heel of the wall depending on wall friction and angle of ground slope. It is very complicated to calculate the earth pressure by a limit equilibrium method (LEM) which considers angles of failure planes varying according to the heel length of the wall. So, the limit analysis method (LAM) is used for calculation of earth pressure in this study. Using the LAM, the earth pressures considering the actual slope angles of failure plane are calculated accurately, and then horizontal and vertical earth pressures are obtained from them respectively. This study results show that by decreasing the relative length of the heel, the slope angle of inward failure plane becomes larger than theoretical slope angle but the slope angle of outward failure plane does not change. And also the friction angle on the vertical plane at the end of the heel of the wall is between the ground slope angle and the wall friction angle, thereafter the active earth pressure decreases. Finally, the Coulomb earth pressure can be easily calculated from the relationship between friction angle (the ratio of vertical earth pressure to horizontal earth pressure) and relative length of the heel (the ratio of heel length to wall height).

키워드

참고문헌

  1. Yoo, K.S. (2017), "Study on Earth Pressure Acting Against Caisson Structure with the Heel", Journal of Korean Society of Coastal and Ocean Engineers, Vol.29, No.2, pp.67-76. https://doi.org/10.9765/KSCOE.2017.29.2.67
  2. Barghouthi, A. F. (1990), "Active Earth Pressure on Walls with base Projection", Jornal of Geotechnical Engineering, Vol.116, No.10, pp.1570-1575. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:10(1570)
  3. Chen, W.F. (1975), "Limit Analysis and Soil Plasticity", Developments in Geotechnical Engineering, Vol.7, Elsevier Scientific Publishing Company, Amsterdam, pp.341-351.
  4. Greco, V. R. (2001), "Active Earth Thrust on Cantilever Walls with Short Heel", Canadian Geotechnical Journal, Vol.38, No.2, pp.401-409. https://doi.org/10.1139/t00-094
  5. Smith, C.C. and Gilbert, M. (2007), "Application of Discontinuity Layout Optimization to Plane Plasticity Problems", Proc. Royal Society A, Vol.463, No.2086, pp.2461-2484. https://doi.org/10.1098/rspa.2006.1788
  6. Smith, C.C. and Gilbert, M. (2010), "Advances in Computational Limit State Analysis and Design", Advances in Analysis, Modeling, & Design, Proceedings of the GeoFlorida 2010 Conference.
  7. Teng, W.C. (1962), "Foundation design", Prentice-Hall, Inc. pp. 316-317.
  8. Terzaghi, K. (1943), "Theoretical Soil Mechanics", JohnWiley & Sons, Inc. pp.246-247.