DOI QR코드

DOI QR Code

수치해석을 통한 샌드드레인과 열주입에 의한 연약지반의 압밀 해석

Numerical Analysis on Consolidation of Soft Clay by Sand Drain with Heat Injection

  • 투고 : 2017.08.23
  • 심사 : 2017.11.01
  • 발행 : 2017.11.30

초록

연약지반의 압밀거동은 온도변화에 의하여 영향을 받는다. 연약 점토지반 내에 온도가 증가하면 간극수압이 증가하고 간극수압의 소산은 부피와 간극비를 감소시킨다. 또한 높은 온도는 간극유체의 점성을 감소시키므로 압밀속도가 빨라진다. 본 연구에서는 온도가 압밀침하량, 압밀시간, 간극수압과 같은 압밀거동에 미치는 영향을 분석하였으며, 이를 위하여 수리역학적(HM) 및 열수리역학적(THM) 거동에 대한 수치해석을 수행하였다. 열주입과 샌드드레인을 동시에 고려하였으며, 온도 변화 및 샌드드레인 직경 변화를 고려하여 해석을 수행하였다. 해석결과, 시료내부의 온도는 열원의 온도와 샌드드레인의 직경 증가에 따라 증가하는 것으로 나타났다. 또한 열주입은 과잉간극수압을 증가시키고 그에 따라 과압밀 영역에서는 추가적인 침하량을 유발하고 정규압밀 영역에서는 압밀시간을 감소시키는 것으로 나타났다.

Temperature change affects consolidation behavior of soft clays. The increase of temperature in soft clays induces the increase of pore water pressure. The dissipation of the excess pore water pressure decreases volume and void ratio. Also, the consolidation rate is accelerated by high temperature which induces the decrease of viscosity of pore fluid. The effects of temperature on the consolidation behavior such as consolidation settlement, consolidation time, and pore water pressure were investigated in this study. A numerical analysis of hydro-mechanical (HM) and thermo-hydro-mechanical (THM) behavior was performed. The combination of heat injection and sand drain for consolidating the soft ground, with varying temperature (40 and $60^{\circ}C$) and sand drain diameter (40, 60, and 80 mm), was considered. The results show that the temperature inside soil specimen increases with the increase of the temperature of heating source and the diameter of sand drain. Moreover, the heat injection increases the excess pore water pressure and, accordingly, induces additional settlement in overconsolidated (OC) state and reduces the consolidation time in normally consolidated (NC) state.

키워드

참고문헌

  1. Abuel-Naga, H.M., Bergado, D.T., and Bouazza, A. (2007), "Thermally Induced Volume Change and Excess Pore Water Pressure of Soft Bangkok Clay", Engineering Geology, Vol.89, pp.144-154. https://doi.org/10.1016/j.enggeo.2006.10.002
  2. Burghignoli, A. Desideri, A., and Miliziano, S. (2000), "A Laboratory Study on the Thermomechanical Behaviour of Clayey Soils", Canadian Geotechnical Journal, Vol.37, pp.764-780. https://doi.org/10.1139/t00-010
  3. Campanella, R. G. and Mitchell, J. k. (1968), "Influence of Temperature Variations on Soil Behavior", Journal of Soil Mechanics and Foundation Engineering Division, Vol.94, pp.709-734.
  4. Delage, P., Sultan, N., and Cui, Y.J. (2000), "On the Thermal Consolidation of Boom Clay", Canadian Geotechnical Journal, Vol.37, pp.343-354. https://doi.org/10.1139/t99-105
  5. Etuk, S.E., Akpabio, I.O., and Udoh, E.M. (2003), "Comparison of the Thermal Properties of Clay Samples as Potential Walling Material for Naturally Cooled Building Design", Journal of Environmental Sciences, Vol.15, No.1, pp.65-68.
  6. Gosavi, S. and Swenson, D. (2006), "Implementation and Verification of the Fully Coupled T-H-M Code, T2STR, for Multiphase Flow in Porous Media", Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering, Stanford University, California, United States.
  7. Graham, J., Tanaka, N., Crilly, T., and Alfaro, M. (2001), "Modified Cam-Clay Modeling of Temperature Effects in Clays", Canadian Geotechnical Journal, Vol.38, pp.608-621. https://doi.org/10.1139/t00-125
  8. Khalili, N., Uchaipichat, A., and Javadi, A.A. (2010), "Skeletal Thermal Expansion Coefficient and Thermos-Hydro-Mechanical Constitutive Relations for Saturated Homogeneous Porous Media", Mechanics of Materials, Vol.42, pp.593-598. https://doi.org/10.1016/j.mechmat.2010.04.001
  9. Kim, B.J. and Yune, C.Y. (2016). "Experimental Research on Consolidation Behavior of Soft Ground Using Vertical Drain with Heat Injection", Spring Geotechnical Engineering Conference, Seoul, Korea.
  10. Kim, B.J., Yune, C.Y., and Oh, M.H. (2012), "Experimental Research on the Reactive Drain Pile for the Improvement and Remediation of Soft Ground", Proceedings of the International Conference on Ground Improvement and Ground Control, Wollongong, Australia, pp.401-407.
  11. Laloui, L. and Cekerevac, C. (2003), "Thermo-Plasticity of Clays: An Isotropic Yield Mechanism", Computer and Geotechnics, Vol.30, pp.649-660. https://doi.org/10.1016/j.compgeo.2003.09.001
  12. Lotfi, E., Delfan, S., Hamidi, A., Shahir, H., and Asadollahfardi, Gh. (2014), "A Numerical Approach for One Dimensional Thermal Consolidation of Clays", International Journal of Civil Engineering, Vol.12, No.1, pp.80-87.
  13. Navarro, V., Candel, M., Barenca, A., Yustres, A. and Garcia, B. (2007), "Optimisation Procedure for Choosing Cam Clay Parameters", Computers and Geotechnics, Vol.34, pp.524-531. https://doi.org/10.1016/j.compgeo.2007.01.007
  14. Pothiraksanon, C., Bergado, D.T., and Abuel-Naga, H.M. (2010), "Full-Scale Embankment Consolidation Test Using Prefabricated Vertical Thermal Drains", Soils and Foundations, Vol.50, No.5, pp.599-608. https://doi.org/10.3208/sandf.50.599
  15. Rutqvist, J., Börgesson, L., Chijimatsu, M., Kobayashi, A., Jing, L., Nguyen, T.S., Noorishad, J., and Tsang, C.F. (2001), "Thermohydromechanics of Partially Saturated Geological Media: Governing Equations and Formulation of Four Finite Element Models", International Journal of Rock Mechanics and Mining Sciences, Vol.38, pp.105-127. https://doi.org/10.1016/S1365-1609(00)00068-X
  16. Sanavia, L., Francois, B., Bortolotto, R., Luison L., and Laloui L. (2008), "Finite Element Modeling of Thermo-Elasto-Plastic Water Saturated Porous Materials", Journal of Theoretical and Applied Mechanics, Vol.38, No.1-2, pp.7-34.
  17. Sanchez, M., Gens, A., Villar, M.V., and Olivella, S. (2016), "Fully Coupled Thermo-Hydro-Mechanical Double-Porosity Formulation for Unsaturated Soils", International Journal of Geomechanics, Vol.16, No.6.
  18. Sandhu, R.S. and Wilson, E.L. (1969), "Finite Element Analysis of Seepage in Elastic Media", Journal of the Engineering Mechanics Division, Vol.95, pp.641-652.
  19. Tawati, A.E. (2010), "Impact of the Rate of Heating on the Thermal Consolidation of Compacted Silt", Master Thesis, University of Colorado, United States.
  20. Tong, F.G., Jing, L.R., and Robert, W.Z. (2010), "A Fully Coupled Thermos-Hydro-Mechanical Model for Simulating Multiphase Flow, Deformation and Heat Transfer in Buffer Material and Rock Masses", International Journal of Rock Mechanics and Mining Sciences, Vol.47, pp.205-217. https://doi.org/10.1016/j.ijrmms.2009.11.002
  21. Wang, W.Q., Kosakowski, G., and Kolditz, O. (2009), "A Parallel Finite Element Scheme for Thermo-Hydromechanical (THM) Coupled Problems in Porous Media", Computers and Geosciences, Vol.35, pp.1631-1641. https://doi.org/10.1016/j.cageo.2008.07.007
  22. Wang, X.R., Shao, H., Hesser, J., Zhang, C.L., Wang, W.Q., and Kolditz, O. (2014), "Numerical Analysis of Thermal Impact on Hydro-Mechanical Properties", Journal of Rock Mechanics and Geotechnical Engineering, Vol.6, pp.405-416. https://doi.org/10.1016/j.jrmge.2014.07.002