References
- Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme", Comput. Struct., 85(7), 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004
- Bathe, K.J. and E.L. Wilson (1976), Numerical Methods in Finite Element Analysis, Prentice-Hall Englewood Cliffs, NJ.
- Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31), 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001
- Bathe, K.J. and Noh, G. (2012), "Insight into an implicit time integration scheme for structural dynamics", Comput. Struct., 98-99, 1-6. https://doi.org/10.1016/j.compstruc.2012.01.009
- Bathe, K.J. (2014), Finite Element Procedures, Prentice-Hall, NJ.
- Belytschko, T. and Lu, Y. (1993), "Explicit multi-time step integration for first and second order finite element semidiscretizations", Comput. Meth. Appl. Mech. Eng., 3-4(108), 353-383.
- Chandra, Y., Zhou, Y., Stanciulescu, I., Eason, T. and Spottswood S. (2015), "A robust composite time integration scheme for snap-through problems", Comput. Mech., 55(5), 1041-1056. https://doi.org/10.1007/s00466-015-1152-3
- Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech., 128(9), 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
- Chang, S.Y. (2007), "Improved explicit method for structural dynamics", J. Eng. Mech., 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748)
- Chang, S.Y. (2014), "Numerical dissipation for explicit, unconditionally stable time integration methods", Earthq. Struct., 7(2), 159-178. https://doi.org/10.12989/eas.2014.7.2.159
- Chang, S.Y. (2015), "Dissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problems", Nonlinear Dyn., 79(2), 1625-1649. https://doi.org/10.1007/s11071-014-1765-7
- Chang, S.Y. (2016), "A virtual parameter to improve stability properties for an integration method", Earthq. Struct., 11(2), 297-313. https://doi.org/10.12989/eas.2016.11.2.297
- Chang, S.Y., and Liao, W.I. (2005), "An unconditionally stable explicit method for structural dynamics", J. Earthq. Eng., 9(3), 349-370. https://doi.org/10.1080/13632460509350546
- Chang, S.Y. (2009), "Accurate integration of nonlinear systems using newmark explicit method", J. Mech., 25(3), 289-297. https://doi.org/10.1017/S1727719100002744
- Chang, S.Y. (2014), "A family of noniterative integration methods with desired numerical dissipation", Int. J. Numer. Meth. Eng., 100(1), 62-86. https://doi.org/10.1002/nme.4720
- Chopra, A. (2007), Dynamics of Structures: Theory and Applications to Earthquake Engineering, 3rd Edition, Prentice-Hall, Upper Saddle River, NJ.
-
Chung, J., and Hulbert, G. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-
${\alpha}$ method", J. Appl. Mech., 60(2), 371-375. https://doi.org/10.1115/1.2900803 - Dokainish, M. and Subbaraj, K. (1989), "A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods", Comput. Struct., 32(6), 1371-1386. https://doi.org/10.1016/0045-7949(89)90314-3
- Dong, S. (2010), "BDF-like methods for nonlinear dynamic analysis", J. Comput. Phys., 229(8), 3019-3045. https://doi.org/10.1016/j.jcp.2009.12.028
- Gautam, S.S. and Sauer, R.A. (2014), "A composite time integration scheme for dynamic adhesion and its application to gecko spatula peeling", Int. J. Comput. Meth. Eng., 11(5), 1350104. https://doi.org/10.1142/S0219876213501041
- Gholampour, A.A. and Ghassemieh, M. (2013), "Nonlinear structural dynamics analysis using weighted residual integration", Mech. Adv. Mater. Struct., 20(3), 199-216. https://doi.org/10.1080/15376494.2011.584146
- Gholampour, A.A., Ghassemieh, M. and Razavi, H. (2011), "A time stepping method in analysis of nonlinear structural dynamics", Appl. Comput. Mech., 5(2), 143-150.
- Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elastodynamics", Comput. Meth. Appl. Mech. Eng., 2(1), 69-97. https://doi.org/10.1016/0045-7825(73)90023-6
- Howe, R. (1991), "A new family of real-time redictor-corrector integration algorithms", Simulation, 57(3), 177-186. https://doi.org/10.1177/003754979105700308
- Kadapa, C., Dettmer, W. and Peric D. (2017), "On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems", Comput. Struct.,193, 226-238. https://doi.org/10.1016/j.compstruc.2017.08.013
- Leontyev, V. (2010), "Direct time integration algorithm with controllable numerical dissipation for structural dynamics: two-step Lambda method", Appl. Numer. Math., 60(3), 277-292. https://doi.org/10.1016/j.apnum.2009.12.005
- Lourderaj, U., Song, K., Windus, T.L., Zhuang, Y. and Hase, W.L. (2007), "Direct dynamics simulations using Hessian-based predictor-corrector integration algorithms", J. Chem. Phy., 126(4), 044105. https://doi.org/10.1063/1.2437214
- Matias Silva, W.T. and Mendes Bezerra, L. (2008), "Performance of composite implicit time integration scheme for nonlinear dynamic analysis", Math. Probl. Eng., 2008, 815029.
-
Mohammadzadeh, S., Ghassemieh, M. and Park Y. (2017), "Structure-dependent improved Wilson-
${\theta}$ method with higher order of accuracy and controllable amplitude decay", Appl. Math. Model., 52, 417-436. https://doi.org/10.1016/j.apm.2017.07.058 - Newmark, N. M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94.
- Noh, G., and K.-J. Bathe (2013), "An explicit time integration scheme for the analysis of wave propagations", Comput. Struct.,129, 178-193. https://doi.org/10.1016/j.compstruc.2013.06.007
- Pezeshk, S. and Camp C.V. (1995), "An explicit time-intergration method for damped structural systems", Struct. Eng. Mech., 3(2), 145-162. https://doi.org/10.12989/sem.1995.3.2.145
- Pezeshk, S. and Camp C.V. (1995), "An explicit time integration technique for dynamic analysis", Int. J. Numer. Meth. Eng., 38(13), 2265-2281. https://doi.org/10.1002/nme.1620381308
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Numerical time integration for dynamic analysis using a new higher order predictor-corrector method", Eng. Comput., 25(6), 541-568. https://doi.org/10.1108/02644400810891544
- Rezaiee-Pajand, M. and Hashemian M. (2016), "Time integration method based on discrete transfer function", Int. J. Struct. Stab. Dyn., 16(5), 1550009. https://doi.org/10.1142/S0219455415500091
- Scherer, P.O. (2017), Numerical Integration, in Computational Physics, Springer.
- Shrikhande, M. (2014), Finite Element Method and Computational Structural Dynamics, PHI Learning Pvt. Ltd.
- Soares, D. (2016), "An implicit family of time marching procedures with adaptive dissipation control", Appl. Math. Model., 40(4), 3325-3341. https://doi.org/10.1016/j.apm.2015.10.027
- Tornabene, F., Dimitri, R. and Viola E. (2016), "Transient dynamic response of generally-shaped arches based on a GDQ-timestepping method", Int. J. Mech. Sci., 114, 277-314 https://doi.org/10.1016/j.ijmecsci.2016.05.005
- Verma, M., Rajasankar, J. and Iyer N.R. (2015), "Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing", Earthq. Struct., 8(6), 1325-1348. https://doi.org/10.12989/eas.2015.8.6.1325
- Wen, W., Wei, K., Lei, H., Duan, S. and Fang, D. (2017), "A novel sub-step composite implicit time integration scheme for structural dynamics", Comput. Struct., 182, 176-186. https://doi.org/10.1016/j.compstruc.2016.11.018
- Wen, W., Tao, Y., Duan, S., Yan, J., Wei, K. and Fang, D. (2017), "A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis", Comput. Struct., 190, 126-149. https://doi.org/10.1016/j.compstruc.2017.05.006
- Wilson, E.L. (1962), Dynamic Response by Step-by-Step Matrix Analysis, Labortorio Nacional de Engenharia Civil, Lisbon, Portugal, Lisbon, Portugal.
- ZHAI, W. M. (1996), "Two simple fast integration methods for large-scale dynamic problems in engineering", Int. J. Numer. Meth. Eng., 39(24), 4199-4214. https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
- Zhang, J., Liu, Y. and Liu D. (2017), "Accuracy of a composite implicit time integration scheme for structural dynamics", Int. J. Numer. Meth. Eng., 109(3), 368-406. https://doi.org/10.1002/nme.5291
- Zhang, L., Liu, T. and Li, Q. (2015), "A robust and efficient composite time integration algorithm for nonlinear structural dynamic analysis", Math. Probl. Eng., 2015, 907023.
Cited by
- A Novel Sub-Stepping Method with Numerical Dissipation Control for Time Integration of Highly Flexible Structures vol.10, pp.10, 2018, https://doi.org/10.1142/s1758825118501065
- Survey of cubic B-spline implicit time integration method in computational wave propagation vol.79, pp.4, 2017, https://doi.org/10.12989/sem.2021.79.4.473