DOI QR코드

DOI QR Code

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Received : 2017.04.11
  • Accepted : 2017.09.28
  • Published : 2017.09.25

Abstract

In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

Keywords

References

  1. Alibeigloo, A. (2016), "Thermoelastic analysis of functionally graded carbon nanotube reinforced composite cylindrical panel embedded in piezoelectric sensor and actuator layers", Compos. Part B: Eng., 98, 225-243. https://doi.org/10.1016/j.compositesb.2016.05.010
  2. Cao, V.V. and Ronagh, H.R. (2014), "Reducing the potential seismic damage of reinforced concrete frames using plastic hinge relocation by FRP", Compos. Part B: Eng., 60, 688-696. https://doi.org/10.1016/j.compositesb.2013.12.048
  3. Changwang, Y., Jinqing, J. and Ju, Z. (2010), "Seismic behavior of steel reinforced ultra high strength concrete column and reinforced concrete beam connection", Trans. Tianjin Univ., 16(4), 309-316. https://doi.org/10.1007/s12209-010-1344-z
  4. Cheng, C. and Chen, C. (2004), "Seismic behavior of steel beam and reinforced concrete column connections", J. Construct. Steel Res., 61(5), 587-606. https://doi.org/10.1016/j.jcsr.2004.09.003
  5. Choi, S.W., Yousok, K. and Park, H.S. (2014), "Multi-objective seismic retrofit method for using FRP jackets in shear-critical reinforced concrete frames", Compos. Part B: Eng., 56, 207-216. https://doi.org/10.1016/j.compositesb.2013.08.049
  6. Davar, A., Khalili, S.M.R. and Malekzadeh Fard, K.(2013), "Dynamic response of functionally graded circular cylindrical shells subjected to radial impulse load", Int. J. Mech. Mater.Des., 9(1), 65-81. https://doi.org/10.1007/s10999-012-9206-6
  7. Feng, C., Kitipornchai, S. and Yang, J. (2017a), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024
  8. Feng, C., Kitipornchai, S. and Yang, J. (2017b), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052
  9. Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube reinforced composites", J. Sound Vib., 329(10), 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
  10. Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  11. Ji, X., Zhang, M., Kang, H., Qian, J. and Hu, H. (2014), "Effect of cumulative seismic damage to steel tube-reinforced concrete composite columns", Earthq. Struct., 7(2), 179-200. https://doi.org/10.12989/eas.2014.7.2.179
  12. Kolahchi, R., Rabani Bidgoli, M., Beygipoor, Gh. and Fakhar, M.H. (2013), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
  13. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  14. Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  15. Liang, X. and Parra-Montesinos, G.J. (2004), "Seismic behavior of reinforced concrete column-steel beam subassemblies and frame systems", J. Struct. Eng., 130(2), 310-319. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(310)
  16. Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Method. Appl. M., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
  17. Liu, Z.Q., Xue, J.Y. and Zhao, H.T. (2016), "Seismic behavior of steel reinforced concrete special-shaped column-beam joints", Earthq. Struct., 11(4), 665-680. https://doi.org/10.12989/eas.2016.11.4.665
  18. Matsunaga, H. (2007), "Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory", Int. J. Mech.Sci., 49(9), 1060-1075. https://doi.org/10.1016/j.ijmecsci.2006.11.008
  19. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  20. Shen, H.S. and Yang, D.Q. (2014), "Nonlinear vibration of anisotropic laminated cylindrical shells with piezoelectric fiber reinforced composite actuators", Ocean Eng., 80, 36-49. https://doi.org/10.1016/j.oceaneng.2014.01.016
  21. Shu, C. and Xue, H. (1997), "Explicit computations of weighting coefficients in the harmonic differential quadrature", J. Sound Vib., 204(3), 549-555. https://doi.org/10.1006/jsvi.1996.0894
  22. Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
  23. Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
  24. Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011