DOI QR코드

DOI QR Code

해수침투 모의를 위한 Visual Basic 기반 2차원 유한차분 밀도 결합 흐름 모델 개발

Development of a Visual-Basic based Two-Dimensional Finite-Difference Density-Coupled Flow Numerical Code for Simulating Saltwater Intrusion

  • Chang, Sun Woo (Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2017.09.19
  • 심사 : 2017.10.13
  • 발행 : 2017.12.01

초록

본 연구는 해수침투를 모의하는 연산의 바탕이 되는 밀도 결합 방정식을 2차원으로 유한차분한 VDFT (Visual Basic based Density-coupled Flow and Transport) 기법을 개발한 것이다. VDFT 코드는 직관적이고 간단하게 사용할 수 있다는 장점을 가지고 있으며 일반 업무용으로 널리 사용되고 있는 EXCEL Visual Basic 플랫폼을 활용할 수 있다는 장점이 있다. 일반적으로 수치모의를 위해 개발한 코드는 벤치마크 라는 대표적인 수치예제를 통하여 검증을 할 수 있다. 본 연구에서는 2가지 실내실험 결과로서 얻어진 데이터와 Henry Problem 및 Modified Henry Problem을 수치예제로 활용하여 VDFT 기법을 검증하였다. 마지막으로 결론에서는 VDFT 코드의 활용가능성을 진단하고 향후 연구의 방향성을 제시하였다.

The purpose of this study is to develop VDFT (Visual Basic based Density-coupled Flow and Transport), a numerical modeling code used to simulate density coupled flow equations used to simulate seawater intrusion in a two dimensional finite difference method. The VDFT code has the advantage of being intuitive and simple to use and has the advantage of utilizing the EXCEL Visual Basic platform, which is widely used for general business purposes. Generally, code developed for numerical simulation can be verified through representative example models called benchmark problem. In this study, we verified the VDFT code using benchmark problem called Henry Problem and Modified Henry Problem as well as two laboratory test data. The results of this study are analyzed the importance of each benchmark problems, validated VDFT code compared to those problems. In conclusion, the possibility of using VDFT code is diagnosed and the direction of future research is suggested.

키워드

참고문헌

  1. Chang, S. (2012). Dynamics of saltwater intrusion processes in saturated porous media systems, Ph.D. Dissertation, Auburn University, Auburn, the United States.
  2. Croucher, A. E. and O'Sullivan, M. J. (1995). "The Henry Problem for Saltwater Intrusion." Water Resources Research, Vol. 31, No. 7, pp. 1809-1814. https://doi.org/10.1029/95WR00431
  3. Diersch, H. J. G. (2002). FEFLOW finite element subsurface flow and transport simulation system-user's manual/reference manual/white papers. Release 5.0 Report, Berlin.
  4. Frind, E. O. (1982). "Simulation of Long-Term Transient Density-Dependent Transport in Groundwater." Advances in Water Resources, Vol. 5, No. 2, pp. 73-88. https://doi.org/10.1016/0309-1708(82)90049-5
  5. Goswami, R. R. and Clement, T. P. (2007). "Laboratory-scale Investigation of Saltwater Intrusion Dynamics." Water Resources Research, Vol. 43, No. 4, doi: 10.1029/2006WR005151.
  6. Goswami, R. R., Clement, T. P. and Hayworth, J. H. (2012). "Comparison of Numerical Techniques used for Simulating Variable-Density Flow and Transport Experiments, Journal of Hydrologic Engineering, Vol. 17, No. 2, pp. 272-282. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000428
  7. Guo, W. and Langevin, C. D. (2002). User's Guide to SEWAT: A Computer Program for Simulation of Three-Dimensional Variable-Density Ground-Water Flow, United States Geological Survey.
  8. Henry, H. R. (1964). Effects of dispersion on salt encroachment in coastal aquifers, U.S. Geological Survey Water-Supply Paper Report 1613-C, C71-C84. pp.
  9. Huyakorn, P. S., Andersen, P. F., Mercer, J. W. and White, Jr. H. O. (1987). "Saltwater Intrusion in Aquifers: Development and Testing of a Three-Dimensional Finite Element Model." Water Resources Research, Vol. 23, No. 2, pp. 293-312. https://doi.org/10.1029/WR023i002p00293
  10. Kanel, S. R., Goswami, R. R., Clement, T. P., Barnett, M. O. and Zhao, D. (2008). "Two Dimensional Transport Characteristics of Surface Stabilized Zero-Valent Iron Nanoparticles in Porous Media." Environ Sci Technol, Vol. 42, No. 3, pp. 896-900. https://doi.org/10.1021/es071774j
  11. Lee, C. H. and Cheng, R. T. S. (1974). "On Seawater Encroachment in Coastal Aquifers." Water Resources Research, Vol. 10, pp. 1039-1043. https://doi.org/10.1029/WR010i005p01039
  12. Pinder, G. F. and Cooper, Jr. H. H. (1970). "A Numerical Technique for Calculating the Transient Position of the Saltwater Front." Water Resources Research, Vol. 6, No. 3, pp. 875-882. https://doi.org/10.1029/WR006i003p00875
  13. Segol, G. (1994). Classic Groundwater Simulations Proving and Improving Numerical Models, Old Tappan, N. J.
  14. Segol, G., Pinder, G. F. and Gray, W. G. (1975). "A Galerkin-finite Element Technique for Calculating the Transient Position of the Saltwater Front." Water Resources Research, Vol. 11, No. 2, pp. 343-347. https://doi.org/10.1029/WR011i002p00343
  15. Simpson, M. J. and Clement, T. P. (2003). "Theoretical Analysis of the Worthiness of Henry and Elder Problems as Benchmarks of Density-Dependent Groundwater Flow Models." Advances in Water Resources, Vol. 26, No. 1, pp. 17-31. https://doi.org/10.1016/S0309-1708(02)00085-4
  16. Simpson, M. J. and Clement, T. P. (2004). "Improving the Worthiness of the Henry Problem as a Benchmark for Density-Dependent Groundwater Flow Models." Water Resources Research, Vol. 40, No. 1, p. W01504. https://doi.org/10.1029/2003WR002199
  17. Torlapati, J. and Clement, T. P. (2013). "Benchmarking a Visual-Basic based Multi-Component One-Dimensional Reactive Transport Modeling Tool." Computers & Geosciences, Vol. 50, pp. 72-83. https://doi.org/10.1016/j.cageo.2012.08.009
  18. Voss, C. I. and Provost, A. M. (2002). A Model for Saturated-Unsaturated, Variable-Density Ground-Water Flow with Solute or Energy Transport Report, U.S. Geol. Surv., Reston, Va.
  19. Voss, C. I. and Souza, W. R. (1987). "Variable Density Flow and Solute Transport Simulation of Regional Aquifers Containing a Narrow Freshwater-Saltwater Transition Zone." Water Resources Research, Vol. 23, No. 10, pp. 1851-1866. https://doi.org/10.1029/WR023i010p01851