References
- Luli GW, Strohl WR. 1990. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl. Environ. Microbiol. 56: 1004-1011.
- Shiloach J, Kaufman J, Guillard AS, Fass R. 1996. Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (lambdaDE3) and Escherichia coli JM109. Biotechnol. Bioeng. 49: 421-428.
- Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, et al. 2012. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol. 13: R37. https://doi.org/10.1186/gb-2012-13-5-r37
- Marisch K, Bayer K, Scharl T, Mairhofer J, Krempl PM, Hummel K, et al. 2013. A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level. PLoS One 8: e70516. https://doi.org/10.1371/journal.pone.0070516
- Xia XX, Han MJ, Lee SY, Yoo JS. 2008. Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 8: 2089-2103. https://doi.org/10.1002/pmic.200700826
- Han MJ, Lee SY, Hong SH. 2012. Comparative analysis of envelope proteomes in Escherichia coli B and K-12 strains. J. Microbiol. Biotechnol. 22: 470-478. https://doi.org/10.4014/jmb.1110.10080
- Han MJ, Kim JY, Kim JA. 2014. Comparison of the largescale periplasmic proteomes of the Escherichia coli K-12 and B strains. J. Biosci. Bioeng. 117: 437-442. https://doi.org/10.1016/j.jbiosc.2013.09.008
- Han MJ. 2016. Exploring the proteomic characteristics of the Escherichia coli B and K-12 strains in different cellular compartments. J. Biosci. Bioeng. 122: 1-9. https://doi.org/10.1016/j.jbiosc.2015.12.005
- Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C. 2012. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J. Proteome Res. 11: 1582-1590. https://doi.org/10.1021/pr200748h
- Ping L, Zhang H, Zhai L, Dammer EB, Duong DM, Li N, et al. 2013. Quantitative proteomics reveals significant changes in cell shape and an energy shift after IPTG induction via an optimized SILAC approach for Escherichia coli. J. Proteome Res. 12: 5978-5988. https://doi.org/10.1021/pr400775w
- Wu Q, Yang A, Zou W, Duan Z, Liu J, Chen J, et al. 2013. Transcriptional engineering of Escherichia coli K4 for fructosylated chondroitin production. Biotechnol. Prog. 29:1140-1149. https://doi.org/10.1002/btpr.1777
- Washburn MP, Wolters D, Yates JR 3rd. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19: 242-247. https://doi.org/10.1038/85686
- Carvalho PC, Xu T, Han X, Cociorva D, Barbosa VC, Yates JR 3rd. 2009. YADA: a tool for taking the most out of highresolution spectra. Bioinformatics 25: 2734-2736. https://doi.org/10.1093/bioinformatics/btp489
- Tabb DL, McDonald WH, Yates JR 3rd. 2002. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1:21-26. https://doi.org/10.1021/pr015504q
- Raso C, Cosentino C, Gaspari M, Malara N, Han X, McClatchy D, et al. 2012. Characterization of breast cancer interstitial fluids by TmT labeling, LTQ-Orbitrap Velos mass spectrometry, and pathway analysis. J. Proteome Res. 11:3199-3210. https://doi.org/10.1021/pr2012347
- Cohen-Ben-Lulu GN, Francis NR, Shimoni E, Noy D, Davidov Y, Prasad K, et al. 2008. The bacterial flagellar switch complex is getting more complex. EMBO J. 27: 1134-1144. https://doi.org/10.1038/emboj.2008.48
- Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH, et al. 2009. Genome sequences of Escherichia coli B s trains REL606 and BL21(DE3). J. Mol. Biol. 394: 644-652. https://doi.org/10.1016/j.jmb.2009.09.052
- Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, et al. 2011. The genome sequence of E. coli W (ATCC 9637):comparative genome analysis and an improved genomescale reconstruction of E. coli. BMC Genomics 12: 9. https://doi.org/10.1186/1471-2164-12-9
- Schneider D, Duperchy E, Depeyrot J, Coursange E, Lenski R, Blot M. 2002. Genomic comparisons among Escherichia coli strains B, K-12, and O157:H7 using IS elements as molecular markers. BMC Microbiol. 2: 18. https://doi.org/10.1186/1471-2180-2-18
- Fedyukina DV, Cavagnero S. 2011. Protein folding at the exit tunnel. Annu. Rev. Biophys. 40: 337-359. https://doi.org/10.1146/annurev-biophys-042910-155338
Cited by
- Combined Transcriptome and Proteome Analysis of RpoS Regulon Reveals Its Role in Spoilage Potential of Pseudomonas fluorescens vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.00094
- Roles of Protein Histidine Phosphatase 1 (PHPT1) in Brown Adipocyte Differentiation vol.30, pp.2, 2017, https://doi.org/10.4014/jmb.1909.09003
- Comparative proteomic analysis reveals novel potential virulence factors of Aeromonas veronii vol.1486, pp.1, 2017, https://doi.org/10.1111/nyas.14480