References
- Zhang H, Wang W, Li Y, Yang W, Shen G. 2011. Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy 35:1710-1715. https://doi.org/10.1016/j.biombioe.2011.01.002
- Deschênes J-S, Boudreau A, Tremblay R. 2015. Mixotrophic production of microalgae in pilot-scale photobioreactors:practicability and process considerations. Algal Res. 10: 80-86. https://doi.org/10.1016/j.algal.2015.04.015
-
Ji M-K, Abou-Shanab RAI, Kim S-H, Salama E-S, Lee S-H, Kabra AN, et al. 2013. Cultivation of microalgae species in tertiary municipal wastewater supplemented with
$CO_2$ for nutrient removal and biomass production. Ecol. Eng. 58:142-148. https://doi.org/10.1016/j.ecoleng.2013.06.020 - Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy 66: 204-213. https://doi.org/10.1016/j.biombioe.2014.04.010
- Tang C-C, Zuo W, Tian Y, Sun N, Wang Z-W, Zhang J. 2016. Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors. Bioresour. Technol. 222: 156-164. https://doi.org/10.1016/j.biortech.2016.09.123
-
Ji MK, Yun HS, Park YT, Kabra AN, Oh IH, Choi J. 2015. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas
$CO_2$ for biomass production. J. Environ. Manag. 159: 115-120. https://doi.org/10.1016/j.jenvman.2015.05.037 - Ceron Garcia MC, Camacho FG, Miron AS, Sevilla JMF, Chisti Y, Grima EM. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J. Microbiol. Biotechnol. 16: 689-694.
- Ji MK, Kim HC, Sapireddy VR, Yun HS, Abou-Shanab RA, Choi J, et al. 2013. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Appl. Microbiol. Biotechnol. 97: 2701-2710. https://doi.org/10.1007/s00253-012-4097-x
- Ling J , Nip S, Cheok WL, de Toledo RA, Shim H. 2014. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresour. Technol. 173: 132-139. https://doi.org/10.1016/j.biortech.2014.09.047
- Zhang H, Wang W, Li Y, Yang W, Shen G. 2011. Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy 35: 1710-1715. https://doi.org/10.1016/j.biombioe.2011.01.002
- Amaro HM, Guedes AC, Malcata FX. 2011. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy 88: 3402-3410. https://doi.org/10.1016/j.apenergy.2010.12.014
-
Goncalves AL, Simoes M, Pires JCM. 2014. The effect of light supply on microalgal growth,
$CO_2$ uptake and nutrient removal from wastewater. Energy Convers. Manag. 85: 530-536. https://doi.org/10.1016/j.enconman.2014.05.085 - Bhatnagar A, Chinnasamy S, Singh M, Das KC. 2011. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 88: 3425-3431. https://doi.org/10.1016/j.apenergy.2010.12.064
- Lin TS, Wu JY. 2015. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour. Technol. 184: 100-107. https://doi.org/10.1016/j.biortech.2014.11.005
- Das P, Lei W, Aziz SS, Obbard JP. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour. Technol. 102: 3883-3887. https://doi.org/10.1016/j.biortech.2010.11.102
- Mahapatra DM, Chanakya HN, Ramachandra TV. 2014. Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour. Technol. 168: 142-150. https://doi.org/10.1016/j.biortech.2014.03.130
- Kim HW, Vannela R, Zhou C, Harto C, Rittmann BE. 2010. Photoautotrophic nutrient utilization and limitation during semi-continuous growth of Synechocystis sp. PCC6803. Biotechnol. Bioeng. 106: 553-563. https://doi.org/10.1002/bit.22724
- Montgomery DC. 2017. Design and Analysis of Experiments. John Wiley & Sons, New York.
- Burton FL, Stensel HD, Tchobanoglous G. 2014. Wastewater engineering: treatment and Resource Recovery. McGraw-Hill, New York.
- Yeh K-L, Chang J-S, Chen W-M. 2010. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng. Life Sci. 10: 201-208. https://doi.org/10.1002/elsc.200900116
- Kumar K, Dasgupta CN, Das D. 2014. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour. Technol. 167: 358-366. https://doi.org/10.1016/j.biortech.2014.05.118
- Derringer G. 1980. Simultaneous optimization of several response variables. J. Qual. Technol. 12: 214-219. https://doi.org/10.1080/00224065.1980.11980968
- Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH. 2014. Standard Methods for the Examination of Water and Wastewater, 2014. American Public Health Association, Washington, DC.
- Kim H-W, Park S, Rittmann BE. 2015. Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803. Environ. Eng. Res. 20: 347-355. https://doi.org/10.4491/eer.2015.033
- Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H. 2011. Enhancement of lutein production in Chlorella sorokiniana (Chlorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs 9: 1607. https://doi.org/10.3390/md9091607
- Herrero A, Muro-Pastor AM, Flores E. 2001. Nitrogen control in cyanobacteria. J. Bacteriol. 183: 411-425. https://doi.org/10.1128/JB.183.2.411-425.2001
- Ceron Garcia MC, Sanchez Miron A, Fernandez Sevilla JM, Molina Grima E, Garcia Camacho F. 2005. Mixotrophic growth of the microalga Phaeodactylum tricornutum. Process Biochem. 40: 297-305. https://doi.org/10.1016/j.procbio.2004.01.016
- Madigan MT, Clark DP, Stahl D, Martinko JM. 2010. Brock Biology of Microorganisms, 13th Ed. Benjamin Cummings, San Francisco, CA.
- Ramirez-Verduzco LF, Rodriguez-Rodriguez JE, Jaramillo-Jacob AdR. 2012. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91: 102-111. https://doi.org/10.1016/j.fuel.2011.06.070
- Kim S, Park JE, Cho YB, Hwang SJ. 2013. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour. Technol. 144: 8-13. https://doi.org/10.1016/j.biortech.2013.06.068
- Kumar K, Das D. 2012. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour. Technol. 116: 307-313. https://doi.org/10.1016/j.biortech.2012.03.074
Cited by
- Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation vol.9, pp.1, 2017, https://doi.org/10.1038/s41598-019-55854-9