References
- Klein E, Smith DL, Laxminarayan R. 2007. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerg. Infect. Dis 13: 1840-1846. https://doi.org/10.3201/eid1312.070629
- Levy SB, Marshall B. 2004. Antibacterial resistance worldwide:causes, challenges and responses. Nat. Med. 10: S122-S129. https://doi.org/10.1038/nm1145
- Brown ED, Wright GD. 2016. Antibacterial drug discovery in the resistance era. Nature 529: 336-343. https://doi.org/10.1038/nature17042
- Butler MS, Cooper MA. 2012. Screening strategies to identify new antibiotics. Curr. Drug Targets 13: 373-387. https://doi.org/10.2174/138945012799424624
- Lock RL, Harry EJ. 2008. Cell-division inhibitors: new insights for future antibiotics. Nat. Rev. Drug Discov. 7: 324-338. https://doi.org/10.1038/nrd2510
- Vollmer W. 2006. The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics? Appl. Microbiol. Biotechnol. 73: 37-47. https://doi.org/10.1007/s00253-006-0586-0
- Kapoor S, Panda D. 2009. Targeting FtsZ for antibacterial therapy: a promising avenue. Expert Opin. Ther. Targets 13: 1037-1051. https://doi.org/10.1517/14728220903173257
- Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM, Brown DR, et al. 2008. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321: 1673-1675. https://doi.org/10.1126/science.1159961
- Sun N, Chan FY, Lu YJ, Neves MA, Lui HK, Wang Y et al. 2014. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity. PLoS One 9: e97514. https://doi.org/10.1371/journal.pone.0097514
- Wang J, Galgoci A, Kodali S, Herath KB, Jayasuriya H, Dorso K, et al. 2003. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J. Biol. Chem 278: 44424-44428. https://doi.org/10.1074/jbc.M307625200
- Stokes NR, Sievers J, Barker S, Bennett JM, Brown DR, Collins I, et al. 2005. Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J. Biol. Chem. 280: 39709-39715. https://doi.org/10.1074/jbc.M506741200
- Domadia PN, Bhunia A, Sivaraman J, Swarup S, Dasgupta D. 2008. Berberine targets assembly of Escherichia coli c ell division protein FtsZ. Biochemistry 47: 3225-3234. https://doi.org/10.1021/bi7018546
- Beuria TK, Santra MK, Panda D. 2005. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 44: 16584-16593. https://doi.org/10.1021/bi050767+
- Park YS, Grove CI, Gonzalez-Lopez M, Urgaonkar S, Fettinger JC, Shaw JT. 2011. Synthesis of (-)-viriditoxin: a 6,6'-binaphthopyran-2-one that targets the bacterial cell division protein FtsZ. Angew. Chem. Int. Ed. Engl. 50: 3730-3733. https://doi.org/10.1002/anie.201007298
- Stokes NR, Baker N, Bennett JM, Berry J, Collins I, Czaplewski LG, et al. 2013. An improved small-molecule inhibitor of FtsZ with superior in vitro potency, drug-like properties, and in vivo efficacy. Antimicrob. Agents Chemother. 57: 317-325. https://doi.org/10.1128/AAC.01580-12
- Fleck WF, Strauss DG, Meyer J, Porstendorfer G. 1978. Fermentation, isolation, and biological activity of maduramycin:a new antibiotic from Actinomadura rubra. Z. Allg. Mikrobiol. 18: 389-398. https://doi.org/10.1002/jobm.3630180602
- Marchand C, Beutler JA, Wamiru A, Budihas S, Mollmann U, Heinisch L et al. 2008. Madurahydroxylactone derivatives as dual inhibitors of human immunodeficiency virus type 1 integrase and RNase H. Antimicrob. Agents Chemother. 52:361-364. https://doi.org/10.1128/AAC.00883-07
- Heinisch L, Roemer E, Jutten P, Haas W, Werner W, Mollmann U. 1999. Semisynthetic derivatives of madura hydroxylactone and their antibacterial activities. J. Antibiot. (Tokyo) 52: 1029-1041. https://doi.org/10.7164/antibiotics.52.1029
- Strauss DG, Baum M, Fleck WF. 1986. Butylmaduramycin, a new antibiotic from Actinomadura rubra. J. Basic Microbiol. 26: 169-172. https://doi.org/10.1002/jobm.3620260307
- Zheng CJ, Sohn MJ, Kim WG. 2009. Vinaxanthone, a new FabI inhibitor from Penicillium sp. J. Antimicrob. Chemother. 63: 949-953. https://doi.org/10.1093/jac/dkp058
Cited by
- Dialogue between Staphylococcus aureus SA15 and Lactococcus garvieae strains experiencing oxidative stress vol.18, pp.None, 2018, https://doi.org/10.1186/s12866-018-1340-3
- The secondary metabolites of rare actinomycetes: chemistry and bioactivity vol.9, pp.38, 2019, https://doi.org/10.1039/c9ra03579f
- Moroccan actinobacteria with promising activity against toxic cyanobacteria Microcystis aeruginosa vol.28, pp.1, 2017, https://doi.org/10.1007/s11356-020-10439-2