DOI QR코드

DOI QR Code

Acceleration of Aglycone Isoflavone and γ-Aminobutyric Acid Production from Doenjang Using Whole-Cell Biocatalysis Accompanied by Protease Treatment

  • Li, Yincong (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Ku, Seockmo (Fermentation Science Program, School of Agribusiness and Agriscience, College of Basic and Applied Sciences, Middle Tennessee State University) ;
  • Park, Myeong Soo (Department of Hotel Culinary Arts, Yeonsung University) ;
  • Li, Zhipeng (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Ji, Geun Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • Received : 2017.05.22
  • Accepted : 2017.09.06
  • Published : 2017.11.28

Abstract

Recently, soybean isoflavone aglycones (i.e., daidzein and genistein) and ${\gamma}-aminobutyric$ acid (GABA) have begun to receive considerable consumer attention owing to their potential as nutraceuticals. To produce these ingredients, multiple microorganisms and their enzymes are commonly used for catalysis in the nutraceutical industry. In this work, we introduce a novel fermentation process that uses whole-cell biocatalysis to accelerate GABA and isoflavone aglycone production in doenjang (a traditional Korean soybean paste). Microbial enzymes transform soybean isoflavone glycosides (i.e., daidzin and genistin) and monosodium glutamate into soybean isoflavone aglycones and GABA. Lactobacillus brevis GABA 100 and Aspergillus oryzae KACC 40250 significantly reduced the production time with the aid of a protease. The resulting levels of GABA and daidzein were higher, and genistein production resembled the levels in traditional doenjang fermented for over a year. Concentrations of GABA, daidzein, and genistein were measured as 7,162, 60, and $59{\mu}g/g$, respectively on the seventh day of fermentation. Our results demonstrate that the administration of whole-cell L. brevis GABA 100 and A. oryzae KACC 40250 paired with a protease treatment is an effective method to accelerate GABA, daidzein, and genistein production in doenjang.

Keywords

References

  1. Shin D, Jeong D. 2015. Korean traditional fermented soybean products: jang. J. Ethn. Foods 2: 2-7. https://doi.org/10.1016/j.jef.2015.02.002
  2. Lee JH, Jo EH, Hong EJ, Kim KM, Lee I. 2014. Safety evaluation of filamentous fungi isolated from industrial doenjang koji. J. Microbiol. Biotechnol. 24: 1397-1404. https://doi.org/10.4014/jmb.1403.03007
  3. Kim S, Kim C, Jeon S, Go R, Hwang K, Choi K. 2014. Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab. Anim. Res. 30: 143. https://doi.org/10.5625/lar.2014.30.4.143
  4. Miao Q, Li J, Miao S, Hu N, Zhang J, Zhang S, et al. 2011. The bone-protective effect of genistein in the animal model of bilateral ovariectomy: roles of phytoestrogens and PTH/PTHR1 against post-menopausal osteoporosis. Int. J. Mol. Sci. 13: 56-70. https://doi.org/10.3390/ijms13010056
  5. Gaya P, Medina M, Sanchez-Jimenez A, Landete J. 2016. Phytoestrogen metabolism by adult human gut microbiota. Molecules 21: 1034. https://doi.org/10.3390/molecules21081034
  6. You H, Ahn H, Kim J, Wu Q, Ji G. 2015. High expression of ${\beta}$-glucosidase in Bifidobacterium bifidum BGN4 and application in conversion of isoflavone glucosides during fermentation of soy milk. J. Microbiol. Biotechnol. 25: 469-478. https://doi.org/10.4014/jmb.1408.08013
  7. Wang D, Kriegstein A. 2009. Defining the role of GABA in cortical development. J. Physiol. 587: 1873-1879. https://doi.org/10.1113/jphysiol.2008.167635
  8. Steenbergen L, Sellaro R, Stock A, Verkuil B, Beste C, Colzato L. 2015. Transcutaneous vagus nerve stimulation (Tvns) enhances response selection during action cascading processes. Eur. Neuropsychopharmacol. 25: 773-778. https://doi.org/10.1016/j.euroneuro.2015.03.015
  9. Lee S, Ahn J, Kim YG, Jung JK, Lee H, Lee EG. 2013. Gamma-aminobutyric acid production using immobilized glutamate decarboxylase followed by downstream processing with cation exchange chromatography. Int. J. Mol. Sci. 14:1728-1739. https://doi.org/10.3390/ijms14011728
  10. Pham V, Somasundaram S, Lee S, Park S, Hong S. 2016. Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes. Biotechnol Lett. 38: 321-327. https://doi.org/10.1007/s10529-015-1982-2
  11. Wang Y, Zhang Z, Jiang C, Xu T. 2016. Recovery of gammaaminobutyric acid (GABA) from reaction mixtures containing salt by electrodialysis. Sep. Purif. Technol. 170: 353-359. https://doi.org/10.1016/j.seppur.2016.07.002
  12. Ku S. 2016. Finding and producing probiotic glycosylases for the biocatalysis of ginsenosides: a mini review. Molecules 21: 645. https://doi.org/10.3390/molecules21050645
  13. New York Times. Stop bashing G.M.O. foods, more than 100 Nobel Laureates say. Available from http://www.nytimes.com/2016/07/01/us/stop-bashing-gmo-foods-morethan-100-nobel-laureates-say.html?_r=0. Accessed July 12, 2016.
  14. Ku S, Park MS, Ji G E, You HJ. 2016. Review on Bifidobacterium bifidum BGN4: functionality and nutraceutical applications as a probiotic microorganism. Int. J. Mol. Sci. 17: 1544. https://doi.org/10.3390/ijms17091544
  15. Ku S, You H, Park M, Ji G. 2015. Effects of ascorbic acid on ${\alpha}$-L-arabinofuranosidase and ${\alpha}$-L-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. J. Korean Soc. Appl. Biol. Chem. 58: 857-865. https://doi.org/10.1007/s13765-015-0113-z
  16. Tufvesson P, Lima-Ramos J, Nordblad M, Woodley J. 2011. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org. Process Res. Dev. 15: 266-274. https://doi.org/10.1021/op1002165
  17. de Carvalho C. 2017. Whole cell biocatalysts: essential workers from nature to the industry. Microb. Biotechnol. 10: 250-263. https://doi.org/10.1111/1751-7915.12363
  18. Ku S, You H, Park M, Ji G. 2016. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechnol. 26: 1206-1215. https://doi.org/10.4014/jmb.1601.01002
  19. Kim N, Ji G. 2014. Characterization of soybean fermented by aflatoxin non-producing Aspergillus oryzae and ${\gamma}$-aminobutyric acid producing Lactobacillus brevis. J. Korean Soc. Appl. Biol. Chem. 57: 703-708. https://doi.org/10.1007/s13765-014-4227-5
  20. Dhakal R, Bajpai VK, Baek KH. 2012. Production of GABA (${\gamma}$-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43: 1230-1241. https://doi.org/10.1590/S1517-83822012000400001
  21. Kao T, Chen B. 2002. An improved method for determination of isoflavones in soybean powder by liquid chromatography. Chromatographia 56: 423-430. https://doi.org/10.1007/BF02492004
  22. Shelp B. 1999. Metabolism and functions of gammaaminobutyric acid. Trends Plant Sci. 4: 446-452. https://doi.org/10.1016/S1360-1385(99)01486-7
  23. Seo M, Lee J, Nam Y, Lee S, Park S, Yi S, et al. 2013. Production of ${\gamma}$-aminobutyric acid by Lactobacillus brevis 340G isolated from kimchi and its application to skim milk. Food Eng. Prog. 17: 418-423. https://doi.org/10.13050/foodengprog.2013.17.4.418
  24. Kim J, Lee M, Ji G, Lee Y, Hwang K. 2009. Production of ${\gamma}$-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 130: 12-16. https://doi.org/10.1016/j.ijfoodmicro.2008.12.028
  25. Jang CH, Park CS, Lim JK, Kim JH, K won DY, Kim YS, et al. 2008. Metabolism of isoflavone derivatives during manufacturing of traditional meju and doenjang. Food Sci. Biotechnol. 17: 442-445.
  26. Ku S, You HJ, Ji GE. 2009. Enhancement of anti-tumorigenic polysaccharide production, adhesion, and branch formation of Bifidobacterium bifidum BGN4 by phytic acid. Food Sci. Biotechnol. 18: 749-754.
  27. Kim NY, Lee JH, Lee I, Ji GE. 2014. An evaluation of aflatoxin and cyclopiazonic acid production in Aspergillus oryzae. J. Food Prot. 77: 1010-1016. https://doi.org/10.4315/0362-028X.JFP-13-448
  28. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. 2005. Production of ${\gamma}$-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22: 497-504. https://doi.org/10.1016/j.fm.2005.01.002
  29. Zhang Y, Song L, Gao Q, Yu SM, Li L, Gao NF. 2012. The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl. Microbiol. Biotechnol. 94: 1619-1627. https://doi.org/10.1007/s00253-012-3868-8
  30. Taylor SA. 2007. Advances in Food and Nutrition Research, pp. 124-151. 1st Ed. Elsevier Inc., London, UK.
  31. Jo S, Hong C, Yang S, Choi K, Kim H, Yang H, et al. 2011. Changes in contents of ${\gamma}$-aminobutyric acid (GABA) and isoflavones in traditional Korean doenjang by ripening periods. J. Korean Soc. Food Sci. Nutr. 40: 557-564. https://doi.org/10.3746/jkfn.2011.40.4.557

Cited by

  1. Beneficial Effects of Monascus sp. KCCM 10093 Pigments and Derivatives: A Mini Review vol.23, pp.1, 2018, https://doi.org/10.3390/molecules23010098
  2. Bacillus Cellulase Molecular Cloning, Expression, and Surface Display on the Outer Membrane of Escherichia coli vol.23, pp.2, 2017, https://doi.org/10.3390/molecules23020503
  3. Biocatalysis of Platycoside E and Platycodin D3 Using Fungal Extracellular β-Glucosidase Responsible for Rapid Platycodin D Production vol.19, pp.9, 2017, https://doi.org/10.3390/ijms19092671
  4. Production of Selenomethionine-Enriched Bifidobacterium bifidum BGN4 via Sodium Selenite Biocatalysis vol.23, pp.11, 2017, https://doi.org/10.3390/molecules23112860
  5. Biocatalysis of Fucodian in Undaria pinnatifida Sporophyll Using Bifidobacterium longum RD47 for Production of Prebiotic Fucosylated Oligosaccharide vol.17, pp.2, 2017, https://doi.org/10.3390/md17020117
  6. A MALDI-MS-based Glucan Hydrolase Assay Method for Whole-cell Biocatalysis vol.47, pp.1, 2017, https://doi.org/10.4014/mbl.1810.10012
  7. Microbial biocatalysis of quercetin-3-glucoside and isorhamnetin-3-glucoside inSalicornia herbaceaand their contribution to improved anti-inflammatory activity vol.10, pp.9, 2017, https://doi.org/10.1039/c9ra08059g
  8. Effects of Red-Bean Tempeh with Various Strains of Rhizopus on GABA Content and Cortisol Level in Zebrafish vol.8, pp.9, 2017, https://doi.org/10.3390/microorganisms8091330
  9. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.612285
  10. Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives vol.41, pp.4, 2017, https://doi.org/10.1080/07388551.2020.1869688