DOI QR코드

DOI QR Code

The Biosynthesis Pathway of Swainsonine, a New Anticancer Drug from Three Endophytic Fungi

  • Ren, Zhenhui (College of Veterinary Medicine, Northwest A&F University) ;
  • Song, Runjie (College of Veterinary Medicine, Northwest A&F University) ;
  • Wang, Shuai (College of Veterinary Medicine, Northwest A&F University) ;
  • Quan, Haiyun (College of Veterinary Medicine, Northwest A&F University) ;
  • Yang, Lin (College of Veterinary Medicine, Northwest A&F University) ;
  • Sun, Lu (College of Veterinary Medicine, Northwest A&F University) ;
  • Zhao, Baoyu (College of Veterinary Medicine, Northwest A&F University) ;
  • Lu, Hao (College of Veterinary Medicine, Northwest A&F University)
  • Received : 2017.09.01
  • Accepted : 2017.10.12
  • Published : 2017.11.28

Abstract

Swainsonine (SW) is the principal toxic ingredient of locoweed plants that causes locoism characterized by a disorder of the nervous system. It has also received widespread attention in the medical field for its beneficial anticancer and antitumor activities. Endophytic fungi, Alternaria sect. Undifilum oxytropis isolated from locoweeds, the plant pathogen Slafractonia leguminicola, and the insect pathogen Metarhizium anisopliae, produce swainsonine. Acquired SW by biofermentation has a certain foreground and research value. This paper mainly summarizes the local and foreign literature published thus far on the swainsonine biosynthesis pathway, and speculates on the possible regulatory enzymes involved in the synthesis pathway within these three fungi in order to provide a new reference for research on swainsonine biosynthesis by endophytic fungi.

Keywords

References

  1. Colegate SM, Dorling PR, Huxtable CR. 1979. A spectroscopic investigation of swainsonine: an alpha-mannosidase inhibitor isolated from Swainsona canescens. Aust. J. Chem. 32: 2257-2264. https://doi.org/10.1071/CH9792257
  2. Lu H, Wang SS, Zhou QW, Zhao YN, Zhao BY. 2012. Damage and control of major poisonous plants in the western grasslands of China - a review. Rangeland J. 34: 329-339. https://doi.org/10.1071/RJ12057
  3. Dorling PR, Huxtable CR, Colegate SM. 1980. Inhibition of lysosomal ${\alpha}$-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens. Biochem. J. 191:649-651. https://doi.org/10.1042/bj1910649
  4. Tulsiani DR, Harris TM, Touster O. 1982. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of golgi mannosidase II. J. Biol. Chem. 257: 7936-7939.
  5. Kang MS, Elbein AD. 1983. Mechanism of inhibition of jack bean ${\alpha}$-mannosidase by swainsonine. Plant Physiol. 71: 551-554. https://doi.org/10.1104/pp.71.3.551
  6. Hino M, Nakayama O, Tsurumi Y, Adachi K, Shibata T, Terano H, et al. 1985. Studies of an immunomodulator, swainsonine. I. Enhancement of immune response by swainsonine in vitro. J. Antibiot. 38: 926-935. https://doi.org/10.7164/antibiotics.38.926
  7. Goss PE, Baptiste J, Fernandes B, Baker M, Dennis JW. 1994. A phase I study of swainsonine in patients with advanced malignancies. Cancer Res. 54: 1450-1457.
  8. Hamaguchi J, Nakagawa H, Takahashi M, Kudo T, Kamiyama N, Sun B, et al. 2007. Swainsonine reduces 5-fluorouracil tolerance in the multistage resistance of colorectal cancer cell lines. Mol. Cancer 6: 58. https://doi.org/10.1186/1476-4598-6-58
  9. Santos FM, Latorre AO, Hueza IM, Sanches DS, Lippi LL, Gardner DR, et al. 2011. Increased antitumor efficacy by the combined administration of swainsonine and cisplatin in vivo. Phytomedicine 18: 1096-1101. https://doi.org/10.1016/j.phymed.2011.06.005
  10. You N, Liu W, Wang T, Ji R, Wang X, Gong Z, et al. 2012. Swainsonine inhibits growth and potentiates the cytotoxic effect of paclitaxel in hepatocellular carcinoma in vitro and in vivo. Oncol. Rep. 28: 2091-2100. https://doi.org/10.3892/or.2012.2035
  11. Singh D, Kaur G. 2014. The antileukaemic cell cycle regulatory activities of swainsonine purified from Metarhizium anisopliae fermentation broth. Nat. Prod. Res. 28: 2044-2047. https://doi.org/10.1080/14786419.2014.919287
  12. Zou HQ, Xu F, Zhang ZY, Sun X. 1997. Research progress of a promising anti-cancer drug swainsonine. Chin. Tradit. Drugs 28: 437-439.
  13. Liu BY, Liu YJ, Yin HR, Chen XH. 1999. Inhibition effect of swainsonine on the growth and metastasis of gastric cancer in vivo. Chin. J. Oncol. 20: 168-170.
  14. Shi Y, Li M, Xu F. 1999. Research overview of the toxic component of locoweed, swainsonine. J. Chin. Med. 22: 47-49.
  15. Sun JY, Zhu MZ, Wang SW. 2006. Effects of swainsonine on apoptosis of the human gastric carcinoma cell SGC-7901. West China J. Pharmaceut. Sci. 15: 197-201.
  16. Liu W, Zhang XB, Li Y, Yang FZ, Xie RM. 2006. Anti-tumor and immune enhancement of swainsonine. NW Pharm. J. 6: 258-260.
  17. White SL, Nagai T, Akiyama SK, Reeves EJ, Grzegorzewski K, Olden K. 1991. Swainsonine stimulation of the proliferation and colony forming activity of murine bone marrow. Cancer Commun. 3: 83-91. https://doi.org/10.3727/095535491820873533
  18. Klein J-LD, Roberts JD, George MD, Kurtzberg J, Breton P, Chermann JC, et al. 1999. Swainsonine protects both murine and human haematopoietic systems from chemotherapeutic toxicity. Br. J. Cancer 80: 87-95. https://doi.org/10.1038/sj.bjc.6690326
  19. Rooprai HK, Kandanearatchi A, Maidment SL, Christidou M, Trillo-Pazos G, Dexter DT, et al. 2001. Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathol. Appl. Neurobiol. 27: 29-39. https://doi.org/10.1046/j.0305-1846.2000.00298.x
  20. Molyneux RJ, James LF. 1982. Loco intoxication: indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus). Science 216: 190-191. https://doi.org/10.1126/science.6801763
  21. Schneider MJ, Ungemach FS, Broquist HP, Harris TM. 1983. (1S,2R,8R,8aR)-1,2,8-Trihydroxyoctahydroindolizine (swainsonine), an ${\alpha}$-mannosidase inhibitor from Rhizoctonia leguminicola. Tetrahedron 39: 29-32. https://doi.org/10.1016/S0040-4020(01)97625-2
  22. Ali MH, Hough L, Richardson AC. 1984. A chiral synthesis of swainsonine from D-glucose. J. Chem. Soc. Chem. Commun. 7: 447-448.
  23. Cao GR, Li SJ, Duan DX, Zhao XW, Molyneux RJ. 1989. The isolation and identification of toxic components from Oxytropis ochrocephala. J. Northwest A&F Univ. (Nat. Sci. Ed.) 17: 1-8.
  24. James LF, Elbein AD, Molyneux RJ, Warren CD. 1989. Swainsonine and Related Glycosidase Inhibitors. Iowa State Press, Ames, IA
  25. Molyneux RJ, Mckenzie RA, O'Sullivan BM, Elbein AD. 1995. Identification of the glycosidase inhibitors swainsonine and calystegine B2 in weir vine (Ipomoea sp. Q6 {af f . Calobra}) and correlation with toxicity. J. Nat. Prod. 58: 878-886. https://doi.org/10.1021/np50120a009
  26. Colodel EM, Gardner DR, Zlotowski P, Driemeier D. 2002. Identification of swainsonine as a glycoside inhibitor responsible for Sida carpinifolia poisoning. Vet. Hum. Toxicol. 44: 177-178.
  27. Braun K, Romero J, Liddell C, Creamer R. 2003. Production of swainsonine by fungal endophytes of locoweed. Mycol. Res. 107: 980-988. https://doi.org/10.1017/S095375620300813X
  28. Dantas AFM, Riet-Correa F, Gardner DR, Medeiros RMT, Barros SS, Anjos BL, et al. 2007. Swainsonine-induced lysosomal storage disease in goats caused by the ingestion of Turbina cordata in Northeastern Brazil. Toxicon 49: 111-116. https://doi.org/10.1016/j.toxicon.2006.08.012
  29. Cook D, Gardner DR, Ralphs MH, Pfister JA, Welch KD, Green BT. 2009. Swainsoninine concentrations and endophyte amounts of Undifilum oxytropis in different plant parts of Oxytropis sericea. J. Chem. Ecol. 35: 1272-1278. https://doi.org/10.1007/s10886-009-9710-9
  30. Lu H, Quan HY, Ren ZH, Wang S, Xue RX, Zhao BY. 2016. The genome of Undifilum oxytropis provides insights into swainsonine biosynthesis and locoism. Sci. Rep. 6: 30760. https://doi.org/10.1038/srep30760
  31. Cook D, Donzelli BGG, Creamer R, Baucom DL, Gardner DR, Pan J, et al. 2017. Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi. G3 (Bethesda) 7: 1971-1979.
  32. Tong DW, Cao GR, Li SJ. 2001. Isolation and identification of swainsonine from Oxytropis kansuensis Bunge. J. Northwest Sci. Tech. Univ. Agric. Foresty 29: 295-298.
  33. Wardrop DJ, Bowen EG. 2011. Nitrenium ion-mediated alkene bis-cyclofunctionalization: total synthesis of (-)-swainsonine. Org. Lett. 13: 2376-2379. https://doi.org/10.1021/ol2006117
  34. Alhawatema MS, Sanogo S, Baucom DL, Creamer R. 2015. A search for the phylogenetic relationship of the a scomycete Rhizoctonia leguminicola using genetic analysis. Mycopathologia 179: 381-389. https://doi.org/10.1007/s11046-015-9860-y
  35. Braun K, Romero J, Liddell C, Creamer R. 2003. Production of swainsonine by fungal endophytes of locoweed. Mycol. Res. 8: 980-988.
  36. Cook D, Beaulieu WT, Mott IW, Riet-Correa F, Gardner DR, Grum D, et al. 2013. Production of the alkaloid swainsonine by a fungal endosymbiont of the Ascomycete order Chaetothyriales in the host Ipomoea carnea. J. Agric. Food Chem. 61: 3797-3803. https://doi.org/10.1021/jf4008423
  37. Wickwire BM, Harris CM, Harris TM, Broquist HP. 1990. Pipecolic acid biosynthesis in Rhizoctonia leguminicola. I. The lysine saccharopine, ${\delta}$-piperidine-6-carboxylic acid pathway. J. Biol. Chem. 265: 14742-14747.
  38. Wickwire BM, Wagner C, Broquist HP. 1990. Pipecolic acid biosynthesis in Rhizoctonia leguminicola. II. Saccharopine oxidase: a unique flavin enzyme involved in pipecolic acid biosynthesis. J. Biol. Chem. 265: 14748-14753.
  39. Sim KL, Perry D. 1997. Analysis of swainsonine and its early metabolic precursors in cultures of Metarhizium anisopliae. Glycoconj. J. 14: 661-668. https://doi.org/10.1023/A:1018505130422
  40. Gough FJ, Elliott ES. 1956. Black-patch of red clover and other legumes caused by Rhizoctonia leguminicola sp. nov. Bull. West Virginia Agric. Exp. Stn. 387: 1-23.
  41. Crump MH, Smalley EB, Henning JN, Nichols RE. 1963. Mycotoxicosis in animals fed legume hay infested with Rhizoctonia leguminicola. J. Am. Vet. Med. Assoc. 143: 996-997.
  42. Aust SD, Broquist HP. 1965. Isolation of a parasympathomimetic alkaloid of fungal origin. Nature 205: 204. https://doi.org/10.1038/205204a0
  43. Rainey DP, Smalley EB, Crump MH, Strong FM. 1965. Isolation of salivation factor from Rhizoctonia leguminicola on red clover hay. Nature 205: 203-204. https://doi.org/10.1038/205203a0
  44. Croom WJ, Hagler WMJ, Frotschel MA, Johnson AD. 1995. The involvement of slaframine and swainsonine in slobbers syndrome: a review. J. Anim. Sci. 73: 1499-1508. https://doi.org/10.2527/1995.7351499x
  45. Yang MQ, Cao GR. 1997. Toxicity, metabolism and use of swainsonine. Prog. Vet. Med. 18: 20-25.
  46. Guengerich FP, Snyder JJ, Broquist HP. 1973. Biosynthesis of slaframine, (1S,6S,8aS)-1-acetoxy-6-aminooctahydroindolizine, a parasympathomimetic alkaloid of fungal origin. I. Pipecolic acid and slaframine biogenesis. Biochemistry 12: 4264-4269. https://doi.org/10.1021/bi00745a034
  47. Broquist H. 1986. Slaframine and swainsonine, mycotoxins from Rhizoctonia leguminicola. Toxin Rev. 5: 241-252.
  48. Harris CM, Schneider MJ, Ungemach FS, Hill JE, Harris TM. 1988. Biosynthesis of the toxic indolizidine alkaloids slaframine and swainsonine in Rhizoctonia leguminicola: metabolism of 1-hydroxyindolizidines. J. Am. Chem. Soc. 110: 940-949. https://doi.org/10.1021/ja00211a039
  49. Guo HL, Ye BL, Yue YY, Chen QT, Fu CS. 1986. Three new species of Metarhizium. Acta Mycol. Sin. 5: 185-190.
  50. Liu AY. 1988. A new record species of the genus Pseudomonas. Acta Mycol. Sin. 7: 192.
  51. Tamerler C, Ullah M, Adlard MW, Keshavarz T. 1998. Effect of pH on physiology of Metarhizium anisopliae for production of swainsonine. FEMS. Microbiol. Lett. 168: 17-23. https://doi.org/10.1111/j.1574-6968.1998.tb13249.x
  52. Sim KL, Perry D. 1995. Swainsonine production by Metarhizium anisopliae determined by means of an enzymatic assay. Mycol. Res. 99: 1078-1082. https://doi.org/10.1016/S0953-7562(09)80776-4
  53. Patrick M, Adlard MW, Keshavarz T. 1993. Production of an indolizidine alkaloid, swainsonine by the filamentous fungus, Metarhizium anisopliae. Biotechnol. Lett. 15: 997-1000. https://doi.org/10.1007/BF00129924
  54. Pryor BM, Creamer R, Shoemaker RA, McLain-Romero J, Hambleton S. 2009. Undifilum, a new genus for endophytic Embellisia oxytropis and parasitic Helminthosporium bornmuelleri on legumes. Botany 87: 178-194. https://doi.org/10.1139/B08-130
  55. Oldrup E, McLain-Romero J, Padilla A, Moya A, Gardner D, Creamer R. 2010. Localization of endophytic Undifilum fungi in locoweed seed and influence of environmental parameters on a locoweed in vitro culture system. Botany 88: 512-521. https://doi.org/10.1139/B10-026
  56. Lu H, Li GZ, Yang XW, Cao D, Xue RX, Quan HY, et al. 2014. Diversity of endophytic fungi from Oxytropis kansuensis. Chin. J. Vet. Sci. 34: 1094-1099.
  57. Cao DD, Lu H, Li XM, Guo YZ, Xue RX, Quan HY, et al. 2015. Isolation, identification and diversity analysis of fungal endophyte in Astragalus stritus. Acta Agrestia Sin. 23: 1252-1258.
  58. Cao DD, Lu H, Xue RX, Wang H, Quan HY, Zhao BY. 2016. Effect of different culturing temperature on isolation and diversity of fungal endophyte in Astragalus variabilis. Chin. J. Vet. Sci. 52: 41-44.
  59. Harris CM, Campbell BC, Molyneux RJ, Harris TM. 1988. Biosynthesis of swainsonine in the diablo locoweed (Astragalus oxyphysus). Tetrahedron Lett. 29: 4815-4818. https://doi.org/10.1016/S0040-4039(00)80616-4
  60. Ralphs MH, Creamer R, Baucom D, Gardner DR, Welsh SL, Graham JD, et al. 2008. Relationship between the endophyte Embellisia spp. and the toxic alkaloid swainsonine in major locoweed species (Astragalus and Oxytropis). J. Chem. Ecol. 34: 32-38. https://doi.org/10.1007/s10886-007-9399-6
  61. Cook D, Gardner DR, Pfister JA. 2014. Swainsoninecontaining plants and their relationship to endophytic fungi. J. Agric. Food Chem. 62: 7326-7334. https://doi.org/10.1021/jf501674r
  62. Zhang LL. 2014. Study on synthesis of swainsonine from endophytic fungi Undifilum oxytropis. Ningxia University, Ningxia, China.
  63. Xue RX, Quan HY, Ren ZH, Lu H, Zhao BY. 2016. Analysis of secondary metabolites of Undifilum oxytropis from locoweeds. Prog.Vet. Med. 7: 64-70.
  64. Broquist HP. 1991. Lysine-pipecolic acid metabolic relationships in microbes and mammals. Annu. Rev. Nutr. 11: 435-448. https://doi.org/10.1146/annurev.nu.11.070191.002251
  65. Guptar N, Spenser ID. 1969. Biosynthesis of the piperidine nucleus. The mode of incorporation of lysine into pipecolic acid and into piperidine alkaloids. J. Biol. Chem. 244: 88-94.
  66. He M. 2006. Pipecolic acid in microbes: biosynthetic routes and enzymes. J. Ind. Microbiol. Biotechnol. 33: 401-407. https://doi.org/10.1007/s10295-006-0078-3
  67. Chang YF, Adams E. 1971. Induction of separate catabolic pathways for L- and D-lysine in Pseudomonas putida. Biochem. Biophys. Res. Commun. 45: 570-577. https://doi.org/10.1016/0006-291X(71)90455-4
  68. Miller DL, Rodwell VW. 1971. Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates. J. Biol. Chem. 246: 2758-2764.
  69. Yang GD. 2012. Study on the Synthesis of Swainsonine of Locoweed Endophytic Fungi. Northwest A&F University, Yangling, Xi'an, China.
  70. Kinzel JJ, Bhattacharjee JK. 1979. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis. J. Bacteriol. 138: 410-417.
  71. Kurtz M, Bhattacharjee JK. 1975. Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid. J. Gen. Microbiol. 86: 103-110. https://doi.org/10.1099/00221287-86-1-103
  72. Mukherjee S, Dawe AL, Creamer R. 2012. Potential role for saccharopine reductase in swainsonine metabolism in endophytic fungus, Undifilum oxytropis. Fungal Biol. 116:902-909. https://doi.org/10.1016/j.funbio.2012.05.007
  73. Fujii T, Narita T, Agematu H, Agata N, Isshiki K. 2000. Characterization of L-lysine 6-aminotransferase and its structural gene from Flavobacterium lutescens IFO3084. J. Biochem. 128: 391-397. https://doi.org/10.1093/oxfordjournals.jbchem.a022766
  74. Naranjo L, Valmaseda EM, Banuelos O, Lopez P, Riano J, Casqueiro J, et al. 2001. Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the Iys7 gene encoding saccharopine reductase. J. Bacteriol. 183: 7165-7172. https://doi.org/10.1128/JB.183.24.7165-7172.2001
  75. Su SY, Teng C, Zhang W, Chen M. 2013. Progress on type III polyketide synthase from bacteria. Agric. Sci. Technol. (Beijing) 15: 119-129.
  76. Bernhardt R. 2006. Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 124: 128-145. https://doi.org/10.1016/j.jbiotec.2006.01.026

Cited by

  1. Insights into Pipecolic Acid Biosynthesis in Huperzia serrata vol.20, pp.8, 2017, https://doi.org/10.1021/acs.orglett.8b00523
  2. Yellow pigment of Metarhizium anisopliae and its application to the dyeing of fabrics vol.135, pp.4, 2019, https://doi.org/10.1111/cote.12401
  3. The study of metabolites from fermentation culture of Alternaria oxytropis vol.19, pp.None, 2017, https://doi.org/10.1186/s12866-019-1408-8
  4. Swainsonine represses glioma cell proliferation, migration and invasion by reduction of miR-92a expression vol.19, pp.None, 2017, https://doi.org/10.1186/s12885-019-5425-7
  5. Swainsonine inhibits proliferation and collagen synthesis of NIH-3T3 cells by declining miR-21 vol.47, pp.1, 2017, https://doi.org/10.1080/21691401.2019.1620255
  6. Biosynthetic Pathways to Nonproteinogenic α-Amino Acids vol.120, pp.6, 2020, https://doi.org/10.1021/acs.chemrev.9b00408
  7. Cell-free biocatalytic syntheses of L-pipecolic acid: a dual strategy approach and process intensification in flow vol.22, pp.16, 2017, https://doi.org/10.1039/d0gc01817a
  8. Unveiling of Swainsonine Biosynthesis via a Multibranched Pathway in Fungi vol.15, pp.9, 2017, https://doi.org/10.1021/acschembio.0c00466
  9. Inhibitory activities of indolizine derivatives: a patent review vol.30, pp.9, 2017, https://doi.org/10.1080/13543776.2020.1798402
  10. Indolizidine Alkaloids: Prospective Lead Molecules in Medicinal Chemistry vol.7, pp.1, 2017, https://doi.org/10.2174/2215083805666190617145228
  11. Biologically active indolizidine alkaloids vol.41, pp.2, 2017, https://doi.org/10.1002/med.21747
  12. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi vol.84, pp.3, 2017, https://doi.org/10.1021/acs.jnatprod.0c01195
  13. Mutated Shiitake extracts inhibit melanin-producing neural crest-derived cells in zebrafish embryo vol.245, pp.None, 2017, https://doi.org/10.1016/j.cbpc.2021.109033