Abstract
Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.
전주(Electric Pole)는 전력 송/배전에 사용되는 지지물로 외력 측정을 위해 가속도 센서가 이용된다. 기상현상은 전주의 외력에 다양한 영향을 미친다. 가공전선의 탄성변화가 그중 하나이다. 이러한 이유로 전주에 미치는 기상현상 요인을 모델링 하는 것은 매우 중요하다. 가속도 센서로부터 수신된 데이터는 피치(Pitch)와 롤(Roll) 각도로 변환되어 수신된다. 기상 현상은 변수간 상관관계가 높게 나타나며, 모델링을 위해 유의한 설명변수를 선택하는 것은 과대적합(Over Fitting)의 문제에서 매우 중요한 요소이다. 다중공선성(Multicollinearity)을 고려한 설명력이 높은 모델 구축을 위해 기계학습 방법의 하나인 일반화 가법 모형(Generalized Additive Model)을 사용했다. 모델 구축에 사용된 기상 요인 변수는 온도, 습도, 강수량, 풍속, 풍향, 증기압, 대기압, 노점온도, 일조시간, 일사량, 운량이다. 분산 팽창 요인 검증을 수행한 결과 온도, 강수량, 풍속, 풍향, 대기압, 노점온도, 일조시간, 운량의 변수가 선택됐다. 설명변수중 일조시간, 운량, 대기압의 영향도가 높게 나타났으며, 일반화 가법 모형의 평균 결정계수(R-Squared)는 0.69로 유의한 모델을 구축했다. 구축된 모델은 전주 외력의 영향을 예측하는데 도움이 될 수 있을 것이며, 안전성 확보의 목적에 기여할 수 있을 것이라 생각한다.