DOI QR코드

DOI QR Code

Effects of Healing Agent on Crack Propagation Behavior in Thermal Barrier Coatings

  • Jeon, Soo-Hyeok (School of Materials Science and Engineering, Changwon National University) ;
  • Jung, Sung-Hoon (School of Materials Science and Engineering, Changwon National University) ;
  • Jung, Yeon-Gil (School of Materials Science and Engineering, Changwon National University)
  • Received : 2017.07.17
  • Accepted : 2017.09.03
  • Published : 2017.11.30

Abstract

A thermal barrier coating (TBC) with self-healing property for cracks was proposed to improve reliability during gas turbine operation, including structural design. Effect of healing agent on crack propagation behavior in TBCs with and without buffer layer was investigated through furnace cyclic test (FCT). Molybdenum disilicide ($MoSi_2$) was used as the healing agent; it was encapsulated using a mixture of tetraethyl orthosilicate and sodium methoxide. Buffer layers with composition ratios of 90 : 10 and 80 : 20 wt%, using yttria stabilized zirconia and $MoSi_2$, respectively, were prepared by air plasma spray process. After generating artificial cracks in TBC samples by using Vickers indentation, FCTs were conducted at $1100^{\circ}C$ for a dwell time of 40 min., followed by natural air cooling for 20 min. at room temperature. The cracks were healed in the buffer layer with the healing agent of $MoSi_2$, and it was found that the thermal reliability of TBC can be enhanced by introducing the buffer layer with healing agent in the top coat.

Keywords

References

  1. S. W. Myoung, S. S. Lee, H. S. Kim, M. S. Kim, Y. G. Jung, S. I. Jung, T. K. Woo, and U. Paik, "Effect of Post Heat Treatment on Thermal Durability of Thermal Barrier Coatings in Thermal Fatigue Tests," Surf. Coat. Technol., 215, 46-51 (2013). https://doi.org/10.1016/j.surfcoat.2012.08.078
  2. P. Richer, M. Yandouzia, L. Beauvais, and B. Jodoin, "Oxidation Behaviour of CoNiCrAlY Bond Coats Produced by Plasma, HVOF and Cold Gas Dynamic Spraying," Surf. Coat. Technol., 204 [24] 3962-74 (2010). https://doi.org/10.1016/j.surfcoat.2010.03.043
  3. B. Rajasekaran, G. Mauer, and R. Va$\ss$en, "Enhanced Characteristics of HVOF-Sprayed MCrAlY Bond Coats for TBC Applications," J. Therm. Spray Technol., 20 [6] 1209-16 (2011). https://doi.org/10.1007/s11666-011-9668-3
  4. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 [5] 505-53 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
  5. D. R. Clarke, M. Oechsner, and N. P. Padture, "Thermal-Barrier Coatings for More Efficient Gas-turbine Engines," MRS Bull., 37 [10] 891-98 (2012). https://doi.org/10.1557/mrs.2012.232
  6. D. R. Clarke and C. G. Levi, "Materials Design for the Next Generation Thermal Barrier Coatings," Annu. Rev. Mater. Res., 33 [1] 383-417 (2003). https://doi.org/10.1146/annurev.matsci.33.011403.113718
  7. R. A. Miller, "Current Status of Thermal Barrier Coatings-An Overview," Surf. Coat. Technol., 30 [1] 1-11 (1987). https://doi.org/10.1016/0257-8972(87)90003-X
  8. E. Ercenk, U. Sen, and S. Yilmaz, "Structural Characterization of Plasma Sprayed Basalt-SiC Glass-Ceramic Coatings," Ceram. Int., 37 [3] 883-89 (2011). https://doi.org/10.1016/j.ceramint.2010.11.005
  9. S. Das, A. K. Mukhopadhyay, S. Datta, G. C. Das, and D. Basu, "Hard Glass-Ceramic Coating by Microwave Processing," J. Eur. Ceram. Soc., 28 [4] 729-38 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.08.003
  10. T. A. Dobbins, R. Knight, and M. J. Mayo, "HVOF Thermal Spray Deposited $Y_2O_3$-Stabilized $ZrO_2$ Coatings for Thermal Barrier Applications," J. Therm. Spray Technol., 12 [2] 214-25 (2003). https://doi.org/10.1361/105996303770348320
  11. N. P. Padture, M. Gell, and E. H. Jordan, "Thermal Barrier Coatings for Gas-Turbine Engine Applications," Science, 296 [5566] 280-84 (2002). https://doi.org/10.1126/science.1068609
  12. W. G. Sloof, S. R. Turteltaub, A. L. Carabat, Z. Derelioglu, S. A. Ponnusami, and G. M. Song, "Crack Healing in Yttria Stabilized Zirconia Thermal Barrier Coatings," pp. 219-27 in Pioneering Research in Netherlands, Delft University Press, 2015.
  13. W. R. Chen, X. Wu, B. R. Marple, R. S. Lima, and P. C. Patnaik, "Pre-Oxidation and TGO Growth Behaviour of an Air-Plasma-Sprayed Thermal Barrier Coating," Surf. Coat. Technol., 202 [16] 3787-96 (2008). https://doi.org/10.1016/j.surfcoat.2008.01.021
  14. F. Nozahic, D. Monceau, and C. Estournes, "Thermal Cycling and Reactivity of a $MoSi_2/ZrO_2$ Composite Designed for Self-Healing Thermal Barrier Coatings," Mater. Des., 94, 444-48 (2016). https://doi.org/10.1016/j.matdes.2016.01.054
  15. S. D. Mookhoek, H. R. Fischer, and S. van der Zwaag, "A Numerical Study into the Effects of Elongated Capsules on the Healing Efficiency of Liquid-Based Systems," Comput. Mater. Sci., 47 [2] 506-11 (2009). https://doi.org/10.1016/j.commatsci.2009.09.017
  16. Z. Derelioglu, A. L. Carabat, G. M. Song, S. van der Zwaag, and W. G. Sloof, "On the Use of B-Alloyed $MoSi_2$ Particles as Crack Healing Agents in Yttria Stabilized Zirconia Thermal Barrier Coatings," J. Eur. Ceram. Soc., 35 [16] 4507-11 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.08.035
  17. A. A. Sharif, "High-Temperature Oxidation of $MoSi_2$," J. Mater. Sci., 45 [4] 865-70 (2010). https://doi.org/10.1007/s10853-009-4012-8
  18. M. J. Meijerink, "Coating of $MoSi_2$ Healing Particles for Self-Healing Thermal Barrier Coatings," in MS Thesis, Delft University of Technology, Delft, 2015.
  19. M. Erfanmanesh, S. R. Bakhshi, M. Khajelakzay, and M. Salekbafghi, "The Effect of Argon Shielding Gas at Plasma Spray Process on the Structure and Properties of $MoSi_2$ Coating," Ceram. Int., 40 [3] 4529-33 (2014). https://doi.org/10.1016/j.ceramint.2013.08.128
  20. M. Kilo, C. Argirusis, G. Borchardt, and R. A. Jackson, "Oxygen Diffusion in Yttria Stabilized Zirconia-Experimental Results and Molecular Dynamics Calculations," Phys. Chem. Chem. Phys., 5 [11] 2219-24 (2003). https://doi.org/10.1039/B300151M
  21. Z. Yao, J. Stiglich, and T. S. Sudarshan, "Molybdenum Silicide Based Materials and Their Properties," J. Mater. Eng. Perform., 8 [3] 291-304 (1999). https://doi.org/10.1361/105994999770346837
  22. H. Heuer, "Oxygen and Aluminum Diffusion in ${\alpha}$-$Al_2O_3$: How Much Do We Really Understand?," J. Eur. Ceram. Soc., 28 [7] 1495-507 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.020
  23. E. H. Kim, W. R. Lee, Y. G. Jung, and C. S. Lee, "A New Binder System for Preparing High Strength Inorganic Molds in Precision Casting," Mater. Chem. Phys., 126 [1] 344-51 (2011). https://doi.org/10.1016/j.matchemphys.2010.11.015
  24. A. Portinha, V. Teixeira, J. Carneiro, J. Martins, M. F. Costa, R. Vassen, and D. Stoever, "Characterization of Thermal Barrier Coatings with a Gradient in Porosity," Surf. Coat. Technol., 195 [2] 245-51 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.094

Cited by

  1. Crack-Healing Behavior and Mechanical Strength Recovery of 5 vol% Silicon Carbide Particle Dispersed Yttrium Monosilicate Composites vol.60, pp.1, 2019, https://doi.org/10.2320/matertrans.m2018193
  2. Review on Self-Healing Thermal Barrier Coatings for Space Applications vol.10, pp.1, 2021, https://doi.org/10.1520/mpc20210062