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MINIMAL AND MAXIMAL BOUNDED SOLUTIONS FOR

QUADRATIC BSDES WITH STOCHASTIC CONDITIONS

Shengjun Fan and Huanhuan Luo

Abstract. This paper is devoted to the minimal and maximal bounded

solutions for general time interval quadratic backward stochastic differ-
ential equations with stochastic conditions. A general existence result

is established by the method of convolution, the exponential transform,
Girsanov’s transform and a priori estimates, where the terminal time is

allowed to be finite or infinite, and the generator g is allowed to have a

stochastic semi-linear growth and a general growth in y, and a quadratic
growth in z. This improves some existing results at some extent. Some

new ideas and techniques are also applied to prove it.

1. Introduction and preliminaries

Throughout this paper, let d be a positive integer and (Bt)t≥0 a stan-
dard d-dimensional Brownian motion defined on a complete probability space
(Ω,F , P ), and (Ft)t≥0 the completed natural σ-algebra generated by (Bt)t≥0

and FT := F , where the time terminal 0 < T ≤ +∞. We consider the following
one-dimensional backward stochastic differential equation (BSDE for short in
the remaining):

yt = ξ +

∫ T

t

g(s, ys, zs)ds−
∫ T

t

zs · dBs, t ∈ [0, T ],(1)

where the terminal condition ξ is an FT -measurable random variable, and
the generator g(ω, t, y, z) : Ω × [0, T ] ×R ×Rd 7→ R is an (Ft)-progressively
measurable random function for each (y, z) and almost everywhere continuous
in (y, z). The triple (ξ, T, g) is called the parameters of BSDE (1) and a pair
of (Ft)-progressively measurable processes (yt, zt)t∈[0,T ] satisfying (1) is called
a solution of BSDE (1).
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Since the nonlinear version of finite time interval multidimensional BSDEs
with square-integrable parameters was introduced by [18], which established
an existence and uniqueness result for square-integrable solutions under the
Lipschitz assumption of the generator g, the BSDEs have been extensively
investigated with great interest and they have become important tools in many
fields such as stochastic games, the optimal control, financial mathematics and
PDEs and so on, see [3], [11], [14] etc.

Many works are interested in improving the work of [18] by weakening the
assumptions with respect to the parameters (ξ, T , g), see [1-10, 12-13, 15-17,
19] etc. In particular, the general time interval BSDEs are first introduced
and investigated in [6], and further developed in [1], [3], [7], [10], and [19]
etc. [14] first introduced a quadratic growth condition of the generator g in
z and proved the existence, uniqueness and stability of the bounded solutions
of BSDEs, and the quadratic BSDEs were further investigated in [2], [4], [5],
[8], [9], [10], [12], [16], and so on. Especially, in [4-5] and [8-9] the authors
studied the quadratic BSDEs with unbounded terminal value. Very recently,
[17] put forward some stochastic Lipschitz conditions of the generator g in (y, z)
and established several existence, uniqueness and comparison results of the Lp

(p > 1) solutions for general time interval BSDEs.
In light of these works, this paper is devoted to the minimal and maximal

bounded solutions of general time interval quadratic BSDEs with some certain
stochastic conditions. A general existence result is established, which improves
some known results mentioned in the previous paragraph at some extent. The
main reason lies in that our conditions for the generator g is allowed to be more
general and our terminal time is allowed to be finite or infinite. It should be
mentioned that under our weaker assumptions, the usual ODE-based or PDE-
based method employed in existing works such as [10], [16] and [13] is not valid
any longer, and some new ideas and techniques have been applied to prove our
result.

Let us close this section by introducing some notations and definitions. De-
note R+ := [0,+∞) and for every positive integer n, denote by | · | the norm
of Euclidean space Rn. Let L2(Ω,FT , P ) represent the set of FT -measurable
random variables ξ such that E[|ξ|2] < +∞, and L∞(Ω,FT , P ) the set of FT -
measurable bounded random variables endowed with the infinity norm. And,
let S2(0, T ; R) (S2 for short) represent the set of real-valued, (Ft)-adapted and
continuous processes (Yt)t∈[0,T ] such that

‖Y ‖S2 :=

(
E

[
sup
t∈[0,T ]

|Yt|2
]) 1

2

< +∞,

and S∞ the set of (Ft)-adapted, continuous and bounded processes. Fur-
thermore, let M2(0, T ; Rd) (M2 for short) represent the set of Rd-valued and
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(Ft)-progressively measurable processes (Zt)t∈[0,T ] such that

‖Z‖M2 :=

(
E

[ ∫ T

0

|Zt|2dt

]) 1
2

< +∞.

Clearly, S2 and M2 are Banach spaces. Finally, let L∞(Ω;L1([0, T ]; R+)) and
L∞(Ω;L2([0, T ]; R+)) represent respectively the set of (Ft)-progressively mea-
surable processes ut(ω) : Ω× [0, T ] 7→ R+ satisfying∥∥∥∥ ∫ T

0

us(ω)ds

∥∥∥∥
∞
< +∞ and

∥∥∥∥∫ T

0

u2
s(ω)ds

∥∥∥∥
∞
< +∞.

Definition 1. A pair of (Ft)-progressively measurable processes (y·, z·) is
called a bounded (L2) solution of BSDE (1) if (y·, z·) ∈ S∞ ×M2 (S2 ×M2)
and satisfies BSDE (1).

Definition 2. We call (yt, zt)t∈[0,T ] the minimal (resp. maximal) bounded
solution of BSDE (1) if it is a bounded solution of BSDE (1) and y· ≤ y′· (resp.
y· ≥ y′·) for any bounded solution (y′·, z

′
·) of BSDE (1). Similarly, we can define

the minimal (resp. maximal) L2 solution of BSDE (1).

2. Main results and its proof

The following Theorem 1 is the main result of this paper which generalizes,
at some extent, some existing results of bounded solutions obtained in [16]
and [10] respectively. In stating it, we need the following assumptions on the
generator g, where 0 < T ≤ +∞.

(H1) There exist two stochastic processes f·, u· ∈ L∞(Ω;L1([0, T ]; R+)) and
a continuous function h(·) : R→ R+ such that dP ×dt−a.e., for each
y ∈ R and z ∈ Rd,

sgn(y)g(ω, t, y, z) ≤ ft(ω) + ut(ω)|y|+ h(y)|z|2.

(H2) There exist a stochastic process v· ∈ L∞(Ω;L1([0, T ]; R+)) and two
continuous functions ψ(·), ϕ(·) : R 7→ R+ such that dP × dt− a.e., for
each y ∈ R and z ∈ Rd,

|g(ω, t, y, z)| ≤ vt(ω)ψ(y) + ϕ(y)|z|2.

Remark 1. By Example 3.1 in [17] it is clear that (H1) and (H2) are respectively
weaker than the corresponding assumptions (3A1) with l(y) := 1+|y| and (3A2)
in [10].

Theorem 1. Let 0 < T ≤ +∞, ξ ∈ L∞(Ω,FT , P ) and the generator g satisfy
(H1) and (H2). Then BSDE (ξ, T, g) admits both a minimal and a maximal
solution among all bounded solutions (y·, z·). Moreover, for each t ∈ [0, T ], we
have

dP − a.s., |yt| ≤
(
‖ξ‖∞ +

∥∥∥∥∫ T

0

ft dt

∥∥∥∥
∞

)
e‖

∫ T
0
ut dt‖∞ .
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As said in the introduction, under our weaker assumptions (H1) and (H2),
the usual PDE-based or ODE-based method applied in [16] and [10] is not valid
any longer (see Remark 3 of this paper for details), we need to develop and use
some new ideas and techniques to prove Theorem 1.

We shall establish the following four lemmas. Firstly, in the same way as
in Lemma 2.4 of [19], we can establish the following a priori estimate of L2

solutions, which will play an important role in the proof of the existence of
bounded solutions. The proof is standard, we omit it here.

Lemma 1. Let 0 < T ≤ +∞, ξ ∈ L2(Ω,FT , P ), g is a generator of BSDE, and
(yt, zt)t∈[0,T ] is an L2 solution of BSDE (ξ, T, g). If g satisfies the following
assumption:

(A) There exist three (Ft)-progressively measurable non-negative processes
µ· ∈ L∞(Ω;L1([0, T ]; R+)), λ· ∈ L∞(Ω;L2([0, T ]; R+)) and (ft)t∈[0,T ]

with E
[
(
∫ T

0
ft dt)2

]
< +∞ such that dP × dt − a.e., for each y ∈ R

and z ∈ Rd,

sgn(y)g(ω, t, y, z) ≤ ft(ω) + µt(ω)|y|+ λt(ω)|z|.
Then there exists a constant C > 0 depending only on{∥∥∫ T

0

µt dt
∥∥
∞ +

∥∥∫ T

0

λ2
t dt
∥∥
∞

}
such that for each 0 ≤ r ≤ t ≤ T , we have, dP − a.s.,

E

[
sup
s∈[t,T ]

|ys|2 +

∫ T

t

|zs|2 ds

∣∣∣∣Fr] ≤ CE

[
|ξ|2 +

(∫ T

t

fs ds

)2∣∣∣∣Fr].
By virtue of Itô’s formula we can prove the following Lemma 2, which is

a sharp a priori estimate of bounded solutions and will be used several times
later.

Lemma 2. Let 0 < T ≤ +∞, ξ ∈ L∞(Ω,FT , P ), the generator g satisfy (H1),
and (y·, z·) be a bounded solution of BSDE (ξ, T, g). Then for each t ∈ [0, T ],
dP − a.s.,

|yt| ≤
(
‖ξ‖∞ +

∥∥∥∥ ∫ T

0

ft dt

∥∥∥∥
∞

)
e‖

∫ T
0
ut dt‖∞ .(2)

Proof. The proof is inspired by Proposition 1 in [5]. Suppose that g satisfies
(H1) with f·, u· and h(·), (y·, z·) is a bounded solution of BSDE (ξ, T, g) and
dP × dt− a.e., |y·| ≤ C with C ∈ R+. First of all, we show that

∫ ·
0
zs · dBs is

a BMO-martingale, which is equivalent to

sup
τ∈ΣT

∥∥∥∥E[ ∫ T

τ

|zs|2ds

∣∣∣∣Fτ]∥∥∥∥
∞
< +∞,(3)

where ΣT represents the set of all (Ft)-stopping time τ such that τ ≤ T . In
fact, for each τ ∈ ΣT , applying Itô’s formula to e3K|y·| with K := max|y|≤C h(y)
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on [τ, T ] and then taking the conditional expectation with respect to Fτ yield
that dP − a.s.,

1

2
E

[ ∫ T

τ

9K2e3K|ys||zs|2ds

∣∣∣∣Fτ]
≤ E

[
e3K|ξ|

∣∣∣Fτ]+ E

[ ∫ T

τ

3Ke3K|ys|sgn(ys)g(s, ys, zs)ds

∣∣∣∣Fτ].
Then, from the assumptions of y· and g we can deduce that, for each τ ∈ ΣT ,
dP − a.s.,

3

2
K2E

[ ∫ T

τ

e3K|ys||zs|2ds

∣∣∣∣Fτ]
≤ e3KC + 3Ke3KCE

[ ∫ T

τ

(fs + Cus)ds

∣∣∣∣Fτ]
≤ e3KC + 3Ke3KC

{∥∥∥∥∫ T

0

ftdt

∥∥∥∥
∞

+ C

∥∥∥∥∫ T

0

utdt

∥∥∥∥
∞

}
,

from which the desired conclusion (3) follows immediately.
In the sequel, let us fix a t ∈ [0, T ] arbitrarily and for each t̄ ∈ [t, T ] and

x ∈ R, denote

φ(t̄, x) := xe
∫ t̄
t
us ds +

∫ t̄

t

fse
∫ s
t
ur dr ds.

Applying Itô’s formula and Tanaka’s formula to eφ(·,|y·|) on [t, T ] yields that

eφ(t,|yt|) +
1

2

∫ T

t

eφ(s,|ys|)e2
∫ s
t
ur dr|zs|2ds

≤ eφ(T,|ξ|) +

∫ T

t

eφ(s,|ys|)e
∫ s
t
ur dr[sgn(ys)g(s, ys, zs)− fs − us|ys|]ds

−
∫ T

t

eφ(s,|ys|)e
∫ s
t
urdrsgn(ys)zs · dBs,

which means, in view of (H1),

eφ(t,|yt|) ≤ eφ(T,|ξ|) +

∫ T

t

Keφ(s,|ys|)e
∫ s
t
ur dr|zs|2ds

−
∫ T

t

eφ(s,|ys|)e
∫ s
t
urdrsgn(ys)zs · dBs

= eφ(T,|ξ|)−
∫ T

t

eφ(s,|ys|)e
∫ s
t
urdr1s>tsgn(ys)zs ·

[
dBs−Ksgn(ys)zsds

]
.(4)

Furthermore, it follows from (3) that the process

Mt̄ :=

∫ t̄

0

Ksgn(ys)zs · dBs, t̄ ∈ [0, T ]
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is a BMO-martingale under P . Then in view of Theorem 2.3 in [13], the
stochastic exponential E(M) of M is a uniformly integrable martingale, where
the stochastic exponential is denoted by

E(M)(t̄) = exp

(
M(t̄)− 1

2
〈M〉t̄

)
, t̄ ∈ [0, T ]

and the quadratic variation is denoted by 〈M〉. Now, let us define by Q the

probability measure under (Ω,FT ) given by dQ
dP := E(M)(T ). Then, noticing

by (3) that

M t̄ :=

∫ t̄

0

eφ(s,|ys|)e
∫ s
t
urdr1s>tsgn(ys)zs · dBs, t̄ ∈ [0, T ]

is also a BMO-martingale under P , by Theorem 3.6 in [13] we know that the
process∫ t̄

0

eφ(s,|ys|)e
∫ s
t
urdr1s>tsgn(ys)zs ·

[
dBs −Ksgn(ys)zsds

]
, t̄ ∈ [0, T ],

the Girsanov’s transform of M , is a BMO-martingale under Q. Thus, taking
the conditional expectation with respect to Ft under Q in (4) yields that for
each t ∈ [0, T ], dP − a.s.,

exp{|yt|} = EQ

[
eφ(t,|yt|)

∣∣∣Ft] ≤ EQ

[
eφ(T,|ξ|)

∣∣∣Ft]
≤ exp

{(
‖ξ‖∞ +

∥∥∥∥∫ T

0

fs ds

∥∥∥∥
∞

)
e‖

∫ T
0
us ds‖∞

}
,(5)

from which (2) follows. Then the proof is complete. �

Remark 2. By Lemma 2, an important observation is that the first part y· of
the bounded solution admits a bound which is independent of the function h(·)
in (H1). This fact will be utilized later.

By virtue of convolution, Itô’s formula, Girsanov’s transform and Lemmas
1-2, we can prove the following Lemma 3.

Lemma 3. Let 0 < T ≤ +∞ and η ∈ L∞(Ω,FT , P ), and dP − a.s., 0 <
α ≤ η ≤ β with α, β ∈ R+. Assume that the generator ḡ satisfies for a sto-
chastic process u· ∈ L∞(Ω;L1([0, T ]; R+)) and a constant k > 0 the following
restriction:

dP × dt− a.e.,∀y ∈ R and z ∈ Rd, −ut(ω)|y|−k|z|2 ≤ ḡ(ω, t, y, z) ≤ ut(ω)|y|.
(6)

Then BSDE (η, T, ḡ) admits a maximal bounded solution. Moreover, for any
bounded solution (y·, z·) of BSDE (η, T, ḡ) we have for each t ∈ [0, T ],

dP − a.s., S0 ≤ yt ≤ Q0,(7)

where
S0 := αe−‖

∫ T
0
utdt‖∞ and Q0 := βe‖

∫ T
0
utdt‖∞ .
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Proof. Suppose that η ∈ L∞(Ω,FT , P ), dP−a.s., 0 < α ≤ η ≤ β and (6) holds
true. In view of (6), for each n ≥ 1 the following (Ft)-progressively measurable
stochastic process is well defined:

ḡn(ω, t, y, z) := sup
(u,v)∈R1+d

{ḡ(ω, t, u, v)− nut(ω)|y − u| − ne−t|z − v|},

(ω, t, y, z) ∈ Ω× [0, T ]×R×Rd.

By a similar argument to that in [15], we can conclude that for each n ≥ 1,
dP × dt− a.e., the function ḡn satisfies

(A1) ∀ y ∈ R and z ∈ Rd,−ut(ω)|y| − k|z|2 ≤ ḡn(ω, t, y, z) ≤ ut(ω)|y|;
(A2) ∀ y ∈ R and z ∈ Rd, ḡn(ω, t, y, z) is decreasing in n;
(A3) ∀ y1, y2 ∈ R and z1, z2 ∈ Rd, |ḡn(ω, t, y1, z1) − ḡn(ω, t, y2, z2)| ≤

nut(ω)|y1 − y2|+ ne−t|z1 − z2|;
(A4) If (yn, zn)→ (y, z), then ḡn(ω, t, yn, zn)→ ḡ(ω, t, y, z), as n→ +∞.

Now, in view of (A1) and (A3), it follows from Theorem 3.1 in [17] that for
each n ≥ 1, the following BSDE

θnt = η +

∫ T

t

ḡn(s, θns ,Γ
n
s )ds−

∫ T

t

Γns · dBs, t ∈ [0, T ]

admits a unique L2 solution (θnt ,Γ
n
t )t∈[0,T ] and, in view of (A2), θn· is decreasing

by Theorem 4.1 in [17]. Furthermore, it follows from (A1) and (A3) that for
each n ≥ 1, dP × dt− a.e., for each y ∈ R and z ∈ Rd,

|ḡn(ω, t, y, z)| ≤ nut(ω)|y|+ ne−t|z|.

It then follows from Lemma 1 that there exists a constant Cn > 0 depending

only on n and ‖
∫ T

0
ut dt‖∞ such that for each n ≥ 1 and t ∈ [0, T ], dP − a.s.,

|θnt |2 ≤ E

[
sup
s∈[t,T ]

|θns |2
∣∣∣∣Ft] ≤ Cn‖η‖2∞ < +∞,

from which it follows that (θn· ,Γ
n
· ) is a bounded solution of BSDE (η, T, ḡn).

In the sequel, it follows from (A1) that ḡn satisfies (H1) with f· = 0, u· and
h(·) = k for each n ≥ 1. Note that (θn· ,Γ

n
· ) is a bounded solution of BSDE

(η, T, ḡn) for each n ≥ 1. By Lemma 2 (see also Remark 2 for details) we can
conclude that for each n ≥ 1 and t ∈ [0, T ],

dP − a.s., |θnt | ≤ ‖η‖∞e‖
∫ T
0
ut dt‖∞ ≤ Q0.(8)

On the other hand, in view of the facts that for each t ∈ [0, T ], dP − a.s.,
αe−

∫ T
0
us ds ∈ L∞(Ω,FT , P ) and

∣∣ − ke∫ t
0
us ds

∣∣ ≤ ke‖
∫ T
0
us ds‖∞ , by [14], the

following BSDE

ỹt = αe−
∫ T
0
us ds −

∫ T

t

ke
∫ s
0
ur dr|z̃s|2 ds−

∫ T

t

z̃s · dBs, t ∈ [0, T ](9)
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admits a bounded solution (ỹ·, z̃·). We define y′· := e
∫ ·
0
us dsỹ· and z′· :=

e
∫ ·
0
us dsz̃·. From Itô’s formula we can check that (y′·, z

′
·) solves the following

BSDE

y′t = α−
∫ T

t

(usy
′
s + k|z′s|2) ds−

∫ T

t

z′s · dBs, t ∈ [0, T ].

And, in view of (9), it follows from the proof of Lemma 2 that
∫ ·

0
z′s · dBs is

a BMO-martingale. Thus, by a similar argument to that from (4) to (5) in
Lemma 2, taking the conditional expectation with respect to Ft in (9) under

a new probability measure Q̃ on (Ω,FT ), which is equivalent to P , yields that
for each t ∈ [0, T ], dP − a.s.,

ỹt = EQ̃

[
αe−

∫ T
0
us ds

∣∣∣Ft] ≥ αe−‖ ∫ T
0
us ds‖∞ > 0,

which means that (y′·, z
′
·) also solves BSDE

y′t = α−
∫ T

t

(us|y′s|+ k|z′s|2) ds−
∫ T

t

z′s · dBs, t ∈ [0, T ].(10)

Moreover, in view of (A1), (A3), α < η and the fact that (θn· ,Γ
n
· ) and (y′·, z

′
·)

are, respectively, an L2 solution of BSDE (η, T, ḡn) and BSDE (10), by Theorem
4.1 in [17], we know that for each n ≥ 1 and t ∈ [0, T ], dP − a.s.,

θnt ≥ y′t = e
∫ t
0
us dsỹt = EQ̃

[
αe−

∫ T
t
us ds

∣∣∣Ft] ≥ S0.(11)

Thus, combining (8)-(11) yields that for each n ≥ 1 and t ∈ [0, T ],

dP − a.s., S0 ≤ θnt ≤ Q0.(12)

Now, in view of (A1) and (12), we know that dP × dt− a.e.,

∀y ∈ [S0, Q0] and z ∈ Rd, |gn(ω, t, y, z)| ≤ ut(ω)Q0 + k|z|2.

Thus, in view of the facts that θn· is decreasing and (A4), following closely the
proof procedure of Theorem 2 in [16], we can deduce that (θn· ,Γ

n
· ) converges

to a bounded solution (θ·,Γ·) of BSDE (η, T, ḡ), and S0 ≤ θ· ≤ Q0.
Next, we show that (θ·,Γ·) is just the maximal bounded solution of BSDE

(η, T, ḡ). In fact, for any bounded solution (θ̄·, Γ̄·) of BSDE (η, T, ḡ) which is
also an L2 solution, in view of (A3) and the fact that (θn· ,Γ

n
· ) is the unique L2

solution of BSDE (η, T, ḡn) and ḡ ≤ ḡn, by Theorem 4.1 in [17] again we have
that for each t ∈ [0, T ] and n ≥ 1, θ̄t ≤ θnt , dP − a.s., and then θ̄· ≤ θ·.

Finally, we show that (7) holds true for any bounded solution (y·, z·) of
BSDE (η, T, ḡ). In fact, set ŷ· = y′· − y·, ẑ· = z′· − z·. In view of (10) and the
fact that dP − a.s., (α− η)+ = 0, Tanaka’s formula yields that

ŷ+
t e

∫ t
0
us ds ≤

∫ T

t

e
∫ s
0
ur dr[1ŷs>0(−us|y′s| − k|z′s|2 − ḡ(s, ys, zs))− usŷ+

s ] ds

(13)
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−
∫ T

t

1ŷs>0e
∫ s
0
ur dr ẑs · dBs, t ∈ [0, T ].

In view of (6), we have, dP × ds− a.e.,

1ŷs>0(−us|y′s| − k|z′s|2 − ḡ(s, ys, zs))(14)

≤ 1ŷs>0[−us|y′s| − k|z′s|2 − (−us|ys| − k|zs|2)

+ (−us|ys| − k|zs|2 − ḡ(s, ys, zs))]

≤ 1ŷs>0(us(|ys| − |y′s|) + k(|zs|2 − |z′s|2))

≤ usŷ
+
s + k1ŷs>0(|zs|+ |z′s|)|ẑs|.

Thus, combining (13) with (14) yields that for each t ∈ [0, T ],

ŷ+
t e

∫ t
0
us ds ≤

∫ T

t

k1ŷs>0e
∫ s
0
ur dr(|zs|+ |z′s|)|ẑs|ds−

∫ T

t

1ŷs>0e
∫ s
0
ur dr ẑs · dBs

(15)

=

∫ T

t

1ŷs>0e
∫ s
0
ur dr ẑs ·

[
dBs −

k(|zs|+ |z′s|)ẑs
|ẑs|

1|ẑs|6=0 ds

]
.

Note by Lemma 2 that
∫ ·

0
zs · dBs and

∫ ·
0
z′s · dBs are both BMO-martingales.

We have

sup
τ∈ΣT

∥∥∥∥E[ ∫ T

τ

k2(|zs|+ |z′s|)2ds

∣∣∣∣Fτ]∥∥∥∥
∞

≤ 2k2 sup
τ∈ΣT

∥∥∥∥E[ ∫ T

τ

|zs|2ds

∣∣∣∣Fτ]∥∥∥∥
∞

+ 2k2 sup
τ∈ΣT

∥∥∥∥E[ ∫ T

τ

|z′s|2ds

∣∣∣∣Fτ]∥∥∥∥
∞
< +∞,

which means that for each n ≥ 1, the process∫ t

0

k(|zs|+ |z′s|)ẑs
|ẑs|

1|ẑs|6=0 · dBs, t ∈ [0, T ]

is a BMO-martingale under P . Then by a similar argument again to that from
(4) to (5) in Lemma 2 and taking the conditional expectation with respect to
Ft in (15) under a new probability measure Q̄ on (Ω,FT ) which is equivalent to
P , we can conclude that for each t ∈ [0, T ], dP − a.s., ŷ+

t ≤ 0. Consequently,
in view of (11), (12) and the fact that (θ·,Γ·) is the maximal bounded solution
of BSDE (η, T, ḡ), we have for each t ∈ [0, T ], dP − a.s.,

S0 ≤ y′t ≤ yt ≤ θt ≤ Q0.

The proof of Lemma 3 is finally completed. �

Remark 3. An essential contribution of Lemma 3 lies in that S0 and Q0 in (7)
do not depend on the constant k defined in (6). This fact will play a key role
in the proof of the following Lemma 4, which is an important step to prove
our main result — Theorem 1. On the other hand, we also especially point
out that these two bounds S0 and Q0 in (7) cannot be obtained by the usual
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ODE-based or PDE-based method employed in [16] and [10], because Lemma
3 in [10] or Lemma 3.2 in [16] is not valid any longer when the ut(ω) is not a
deterministic process. This is the main difficulty overcome in this paper.

By virtue of Lemma 3 we can prove the following Lemma 4, which is an
existence result of the minimal and maximal bounded solutions. It improves
the corresponding conclusion of Lemma 3.4 in [10], where ūt(ω) in the following
(16) is a deterministic process.

Lemma 4. Let 0 < T ≤ +∞, ξ ∈ L∞(Ω,FT , P ) and g be a generator. Assume
that there exists a stochastic process ū· ∈ L∞(Ω;L1([0, T ]; R+)) and a constant
γ > 0 such that dP × dt− a.e., for each y ∈ R and z ∈ Rd,

|g(ω, t, y, z)| ≤ ūt(ω) +
γ

2
|z|2.(16)

Then BSDE (ξ, T, g) admits both a minimal and a maximal solution among all
bounded solutions (y·, z·). Furthermore, for each t ∈ [0, T ], we have

dP − a.s., |yt| ≤ ‖ξ‖∞ +

∥∥∥∥∫ T

0

ūt dt

∥∥∥∥
∞
.(17)

Proof. First of all, let us show the existence of the maximal bounded solution.
Let

η := eγξ ∈ L∞(Ω,FT , P ),

Sγ0 := e−γ(‖ξ‖∞+‖
∫ T
0
ūtdt‖∞),

Qγ0 := eγ(‖ξ‖∞+‖
∫ T
0
ūtdt‖∞).

For each (ω, t, y, z) ∈ Ω× [0, T ]×R×Rd, define

G(ω, t, y, z) :=

(
γyg

(
ω, t,

ln y

γ
,
z

γy

)
− |z|

2

2y

)
· 1y>0.

It then follows from (16) that dP × dt− a.e.,

∀ y ∈R and z ∈Rd, −γūt(ω)|y|− |z|
2

|y|
1|y|6=0 ≤ G(ω, t, y, z) ≤ γūt(ω)|y|.(18)

Furthermore, for each (ω, t, y, z) ∈ Ω× [0, T ]×R×Rd, define

GΨ(ω, t, y, z) := Ψ(y)G(ω, t, y, z),

where Ψ : R 7→ [0, 1] is a smooth function satisfying that

1) 0 ≤ Ψ ≤ 1; 2) Ψ(x) = 1 if x ∈ [Sγ0 , Q
γ
0 ]; 3) Ψ(x) = 0 if x /∈ [Sγ0 /2, 2Q

γ
0 ].

Then in view of (18), dP × dt− a.e., we have

∀ y ∈ R and z ∈ Rd, −γūt(ω)|y| − 2

Sγ0
|z|2 ≤ GΨ(ω, t, y, z) ≤ γūt(ω)|y|.
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Thus, in view of 0 < e−γ‖ξ‖∞ ≤ η ≤ eγ‖ξ‖∞ , it follows from Lemma 3 (see
also Remark 3 for details) that BSDE (η, T,GΨ) admits a maximal bounded
solution (Y Ψ

· , Z
Ψ
· ) such that for each t ∈ [0, T ],

Sγ0 ≤ Y Ψ
t ≤ Q

γ
0 , dP − a.s.,

which means, in view of the definitions of functions Ψ and GΨ, that (Y Ψ
· , Z

Ψ
· )

is a bounded solution of BSDE (η, T,G). Furthermore, it follows from Itô’s
formula that (yΨ

· , z
Ψ
· ) with

yΨ
· :=

lnY Ψ
·
γ

and zΨ
· :=

ZΨ
·

γY Ψ
·

is a bounded solution of BSDE (ξ, T, g) and yΨ
· satisfies (17).

In the sequel, we show that (yΨ
· , z

Ψ
· ) is also the maximal bounded solu-

tion of BSDE (ξ, T, g). In fact, let (ȳ·, z̄·) be any bounded solution of BSDE
(ξ, T, g), with |ȳ·| ≤ B for some constant B > 0. Define GΨ̄(ω, t, y, z) :=
Ψ̄(y)G(ω, t, y, z), where Ψ̄ : R 7→ [0, 1] is a smooth function satisfying that

1) 0 ≤ Ψ̄ ≤ 1; 2) Ψ̄(x) = 1 if x ∈ [e−γB , eγB ]; 3) Ψ̄(x) = 0 if x /∈ [e−γB/2, 2eγB ].

It follows from Itô’s formula that (Ȳ· := eγȳ· , Z̄· := γȲ·z̄·) is a bounded solution
of BSDE (η, T,G) and then, in view of 0 < e−γB ≤ Ȳ· ≤ eγB , BSDE (η, T,GΨ̄).
Note by (18) that dP × dt− a.e.,

∀ y ∈ R and z ∈ Rd, −γūt(ω)|y| − 2

e−γB
|z|2 ≤ GΨ̄(ω, t, y, z) ≤ γūt(ω)|y|.

In view of 0 < e−γ‖ξ‖∞ ≤ η ≤ eγ‖ξ‖∞ , it follows from Lemma 3 (see also Remark
3 for details) again that for each t ∈ [0, T ], dP − a.s., 0 < Sγ0 ≤ Ȳt ≤ Qγ0 ,
which means, in view of the definitions of functions Ψ and GΨ, that (Ȳ·, Z̄·)
is also a bounded solution of BSDE (η, T,GΨ). Thus, in view of the fact
that (Y Ψ

· , Z
Ψ
· ) is the maximal bounded solution of BSDE (η, T,GΨ), we have

dP − a.s., eγȳ· = Ȳ· ≤ Y Ψ
· = eγy

Ψ
· , and then for each t ∈ [0, T ], dP − a.s.,

ȳt ≤ yΨ
t .

Finally, a similar argument to that in Lemma 3.4 of [10] yields that BSDE
(ξ, T, g) admits also a minimal bounded solution satisfying (17). The proof of
Lemma 4 is then complete. �

Remark 4. Once again, an interesting observation is that the first part y· of
the bounded solution in Lemma 4 admits also a bound which is independent
of the constant γ in (16).

We are now in a position to prove our main existence result.

Proof of Theorem 1. Let 0 < T ≤ +∞, ξ ∈ L∞(Ω,FT , P ) and the generator
g satisfy (H1) and (H2) with f·, u·, h(·), v·, ψ(·) and ϕ(·). We only prove the
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existence of the minimal solution. The maximal solution case can be proved
similarly. Denote

M :=

(
‖ξ‖∞ +

∥∥∥∥ ∫ T

0

ft dt

∥∥∥∥
∞

)
e‖

∫ T
0
ut dt‖∞ .

Consider a continuous function κ : R 7→ [−M,M ] such that

1) κ(x) = −M if x < −M ; 2) κ(x) = x if |x| ≤M ; 3) κ(x) = M if x > M,

and for each (ω, t, y, z) ∈ Ω× [0, T ]×R×Rd, define

gκ(ω, t, y, z) := g(ω, t, κ(y), z) and γκ := 2

(
max
|x|≤M

h(x) + 1

)
.

In view of (H1) and (H2), we know that dP × dt − a.e., for each y ∈ R and
z ∈ Rd,

sgn(y)gκ(ω, t, y, z) ≤ ft(ω) + ut(ω)|κ(y)|+ h(κ(y))|z|2(19)

≤ ft(ω) + ut(ω)|y|+ γκ

2
|z|2

and

|gκ(ω, t, y, z)| ≤ vt(ω)

(
max
|x|≤M

ψ(x)

)
+

(
max
|x|≤M

ϕ(x)

)
|z|2.

It then follows from Lemma 4 that BSDE (ξ, T, gκ) admits a minimal bounded
solution (yκ· , z

κ
· ).

In the sequel, since (yκ· , z
κ
· ) is a bounded solution of BSDE (ξ, T, gκ) and

(19) holds for gκ, it follows from Lemma 2 (see also Remark 2 for details) that
for each t ∈ [0, T ], dP − a.s.,

|yκt | ≤
(
‖ξ‖∞ +

∥∥∥∥∫ T

0

ft dt

∥∥∥∥
∞

)
e‖

∫ T
0
ut dt‖∞ = M.(20)

Then, in view of the definitions of κ and gκ, (yκ· , z
κ
· ) is also a bounded solution

of BSDE (ξ, T, g).
Finally, we show that (yκ· , z

κ
· ) is just the minimal bounded solution of BSDE

(ξ, T, g). In fact, let (ȳ·, z̄·) be any bounded solution of BSDE (ξ, T, g) with
|ȳ·| ≤ A for some constant A > 0. Consider a continuous function κ̄ : R 7→
[−A,A] such that

1) κ̄(x) = −A if x < −A; 2) κ̄(x) = x if |x| ≤ A; 3) κ̄(x) = A if x > A.

and for each (ω, t, y, z) ∈ Ω× [0, T ]×R×Rd, define

gκ̄(ω, t, y, z) := g(ω, t, κ̄(y), z).

In view of the definitions of functions κ̄ and gκ̄, it is not hard to verify that
(ȳ·, z̄·) is a bounded solution of BSDE (ξ, T, gκ̄). Moreover, noticing that (19)
holds also true with γκ̄ := 2(max|x|≤A h(x)+1) instead of γκ when κ is replaced
with κ̄, from Lemma 2 again we can conclude that for each t ∈ [0, T ],

dP − a.s., |ȳt| ≤M,
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which means that, in view of the definitions of functions κ and gκ, (ȳ·, z̄·) is
also a bounded solution of BSDE (ξ, T, gκ). Thus, since (yκ· , z

κ
· ) is the minimal

bounded solution of BSDE (ξ, T, gκ), we know that for each t ∈ [0, T ], dP−a.s.,
yκt ≤ ȳt, which is the desired result. The proof is then complete. �

By virtue of Theorem 4.1 in [17] and the proof of Theorem 1 in this paper,
and in view of the convolution in Lemma 3, it is not very hard to verify the
following comparison theorem of the minimal and maximal bounded solutions.

Theorem 2. Let 0 < T ≤ +∞, ξ, ξ′ ∈ L∞(Ω,FT , P ) and both generators g
and g′ satisfy (H1) and (H2). Assume that (y·, z·) and (y′·, z

′
·) are, respectively,

the minimal (resp. maximal) bounded solution of BSDE (ξ, T, g) and BSDE
(ξ′, T, g′) (recall Theorem 1). If dP−a.s., ξ ≤ ξ′ and dP× dt−a.e., g(t, y, z) ≤
g′(t, y, z) for each y ∈ R and z ∈ Rd, then for each t ∈ [0, T ], yt ≤ y′t, dP−a.s.

The following Example 1 demonstrates that Theorem 1 generalizes, at some
extent, the corresponding results in some existing works.

Example 1. Assume that ξ ∈ L∞(Ω,FT , P ) and u· ∈ L∞(Ω;L1([0, T ]; R+)).
Consider BSDE (ξ, T, g) with generator

g(ω, t, y, z) := ut(ω)(|y|+ e−y) +
√
ut(ω)|z|+ ey|z|2.

It is not difficult to verify that g satisfies (H1) and (H2). It follows from The-
orem 1 that BSDE (ξ, T, g) admits both a minimal and a maximal bounded
solutions. Note by Remark 1 that this g satisfies neither the conditions of The-
orem 3.1 in [10] nor the conditions of Theorem 2 in [16]. The above conclusion
cannot be obtained by these results.

Finally, the following Theorem 3 demonstrates that all conclusions obtained
in this paper hold still true when T is a (Ft)-stopping time.

Theorem 3. Let T = +∞, τ is a (Ft)-stopping time valued in [0,+∞),
and ξ ∈ L∞(Ω,Fτ , P ). Define gτ (ω, t, y, z) = 1t≤τg(ω, t, y, z) for (ω, t, y, z) ∈
Ω × [0,+∞) ×R ×Rd. If (yt, zt)t∈[0,+∞) ∈ S∞ ×M2 is a solution of BSDE
(ξ,+∞, gτ ), then yt1t≥τ = ξ for each t ∈ [0,+∞), zt1t≥τ = 0, dP × dt− a.e.,
and (yt, zt)t∈[0,+∞) solves the following BSDE (ξ, τ, g):

yt = ξ +

∫ τ

t

g(s, ys, zs) ds−
∫ τ

t

zs · dBs, t ∈ [0, τ ].

Conversely, if (yt, zt)t∈[0,+∞) ∈ S∞ × M2 satisfies BSDE (ξ, τ, g), then

(ȳt, z̄t)t∈[0,+∞) is a solution of BSDE (ξ,+∞, gτ ) in S∞ × M2, where ȳt :=
yt1t≤τ + ξ1t>τ and z̄t := zt1t≤τ for t ∈ [0,+∞).

Proof. If (yt, zt)t∈[0,+∞) ∈ S∞ ×M2 is a solution of BSDE (ξ,+∞, gτ ), i.e.,

yt = ξ +

∫ +∞

t

1s≤τg(s, ys, zs) ds−
∫ +∞

t

zs · dBs, t ∈ [0,+∞),(21)
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then

yτ = ξ +

∫ +∞

τ

1s≤τg(s, ys, zs) ds−
∫ +∞

τ

zs · dBs = ξ −
∫ +∞

τ

zs · dBs.

Taking the conditional expectation with respect to Fτ in the above identity
yields that yτ = E[ξ|Fτ ] = ξ, and then∫ +∞

0

zs1s≥τ · dBs =

∫ +∞

τ

zs · dBs = 0,

which implies that E[
∫ +∞

0
|zs1s≥τ |2ds] = 0. Hence, zt1t≥τ = 0, dP × dt−a.e.,

and by (21) we know that yt1t≥τ = ξ for each t ∈ [0,+∞) and (yt, zt)t∈[0,+∞)

solves BSDE (ξ, τ, g). Conversely, the conclusion can be verified directly so
that we omit its proof. The proof is then complete. �
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