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FLAG-TRANSITIVE POINT-PRIMITIVE SYMMETRIC

DESIGNS AND THREE DIMENSIONAL PROJECTIVE

SPECIAL UNITARY GROUPS

Ashraf Daneshkhah and Sheyda Zang Zarin

Abstract. The main aim of this article is to study symmetric (v, k, λ) de-

signs admitting a flag-transitive and point-primitive automorphism group

G whose socle is PSU(3, q). We indeed show that such designs must be
complete.

1. Introduction

A symmetric (v, k, λ) design is an incidence structure D = (V,B) consisting
of a set V of v points and a set B of v blocks such that every point is incident
with exactly k blocks, and every pair of blocks is incident with exactly λ points.
A nontrivial symmetric design is one in which 2 < k < v − 1. A symmetric
(v, v− 1, v− 2) design is called complete. A flag of D is an incident pair (α,B)
where α and B are a point and a block of D, respectively. An automorphism
of a symmetric design D is a permutation of the points permuting the blocks
and preserving the incidence relation. An automorphism group G of D is called
flag-transitive if it is transitive on the set of flags of D. If G is primitive on the
point set V, then G is said to be point-primitive. A group G is said to be almost
simple with socle X if XEG 6 Aut(X) where X is a nonabelian simple group.
Further notation and definitions in both design theory and group theory are
standard and can be found, for example, in [5, 10, 13].

Symmetric designs with λ small have been of most interest. Kantor [11] clas-
sified flag-transitive symmetric (v, k, 1) designs (projective planes) of order n
and showed that either D is a Desarguesian projective plane and PSL(3, n)EG,
or G is a sharply flag-transitive Frobenius group of odd order (n2+n+1)(n+1),
where n is even and n2 + n + 1 is prime. Regueiro [17] gave a complete clas-
sification of biplanes (λ = 2) with flag-transitive automorphism groups apart
from those admitting a 1-dimensional affine group (see also [18, 19, 20, 21]).
Zhou and Dong studied nontrivial symmetric (v, k, 3) designs (triplanes) and
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proved that if D is a nontrivial symmetric (v, k, 3) design with a flag-transitive
and point-primitive automorphism group G, then D has parameters (11, 6, 3),
(15, 7, 3), (45, 12, 3) or G is a subgroup of AΓL(1, q) where q = pm with p > 5
prime [7, 27, 28, 29, 30]. Nontrivial symmetric (v, k, 4) designs admitting flag-
transitive and point-primitive almost simple automorphism group whose socle
is an alternating group or PSL(2, q) have also been investigated [6, 31]. It is
known [24] that if a nontrivial symmetric (v, k, λ) design D with λ 6 100 ad-
mitting a flag-transitive, point-primitive automorphism group G, then G must
be an affine or almost simple group. Therefore, it is interesting to study such
designs whose socle is of almost simple type or affine type.

In this paper, however, we are interested in large λ. In this direction, it
is recently shown in [2] that there are only four possible symmetric (v, k, λ)
designs admitting a flag-transitive and point-primitive automorphism group G
satisfying X E G 6 Aut(X) where X = PSL(2, q), see also [26]. In the case
where X is a sporadic simple group, there also exist four possible parameters
(see [25]). This study for X := PSL(3, q) gives rise to one nontrivial design
(up to isomorphism) which is a Desarguesian projective plane PG(2, q) and
PSL(3, q) 6 G (see [1]). This paper is devoted to studying symmetric designs
admitting a flag-transitive and point-primitive almost simple automorphism
group G whose socle is X := PSU(3, q). Indeed, the situation for PSU(3, q) is
rather different and trivial design is the only symmetric design admitting such
automorphism group G. We prove Theorem 1.1 below in Section 3.

Theorem 1.1. Let D be a symmetric (v, k, λ) design, and let G be an auto-
morphisms group of D with socle X = PSU(3, q). If G is flag-transitive and
point-primitive, then D is a complete design.

In order to prove Theorem 1.1, we need to know the complete list [3, Table
8.5] of maximal subgroups of almost simple groups with socle PSU(3, q) (see
Lemma 2.4 below). We frequently apply Lemma 2.1 below as a key tool and
use GAP [8] for computations.

In the case where G is imprimitive, Praeger and Zhou [22] studied point-
imprimitive symmetric (v, k, λ) designs, and determined all such possible de-
signs for λ 6 10. This motivates Praeger and Reichard [14] to classify flag-
transitive symmetric (96, 20, 4) designs. As a result of their work, the only
examples for flag-transitive, point-imprimitive symmetric (v, k, 4) designs are
(15, 8, 4) and (96, 20, 4) designs. In a recent study of imprimitive flag-transitive
designs [4], Cameron and Praeger gave a construction of a family of designs with
a specified point-partition, and determine the subgroup of automorphisms leav-
ing invariant the point-partition. They gave necessary and sufficient conditions
for a design in the family to possess a flag-transitive group of automorphisms
preserving the specified point-partition. Consequently, they gave examples of
flag-transitive designs in the family, including a new symmetric (1480, 336, 80)
design with automorphism group 212 : ((3 · M22) : 2), and a construction of
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one of the families of the symmetric designs exhibiting a flag-transitive, point-
imprimitive automorphism group.

2. Preliminaries

In this section, we state some useful facts in both design theory and group
theory. The following Lemma 2.1 is a key result in our approach to prove
Theorem 1.1:

Lemma 2.1. Let D be a symmetric (v, k, λ) design, and let G be a flag-
transitive automorphism group of D. If α is a point in V and M := Gα,
then

(a) k(k − 1) = λ(v − 1);
(b) k | |M | and λv < k2;
(c) k | gcd(λ(v − 1), |M |);
(d) k | λd, for all subdegrees d of G.

Proof. The proof follows from [2, Lemma 2.1], see also [31, Lemma 2.2]. �

Recall that a group G is called almost simple if X E G 6 Aut(X) where
X is a (nonabelian) simple group. If M is a maximal subgroup of an almost
simple group G with socle X, then G = MX, and since we may identify X
with Inn(X), the group of inner automorphisms of X, we also conclude that
|M | divides |Out(X)| · |X ∩ M |. This implies the following elementary and
useful fact:

Lemma 2.2. Let G be an almost simple group with socle X, and let M be
maximal in G not containing X. Then

(a) G = MX;
(b) |M | divides |Out(X)| · |X ∩M |.

Lemma 2.3. Suppose that D is a symmetric (v, k, λ) design admitting a flag-
transitive and point-primitive almost simple automorphism group G with socle
X of Lie type in odd characteristic p. Suppose also that the point-stabiliser Gα,
not containing X, is not a parabolic subgroup of G. Then gcd(p, v − 1) = 1.

Proof. Note that Gα is maximal in G, then by Tits’ Lemma [23, (1.6)], p divides
|G : Gα| = v, and so gcd(p, v − 1) = 1. �

If a group G acts primitively on a set V and α ∈ V (with |V| > 2), then the
point-stabiliser Gα is maximal in G [5, Corollary 1.5A]. Therefore, in our study,
we need a list of all maximal subgroups of almost simple group G with socle
X := PSU(3, q). Note that if M is a maximal subgroup of G, then M0 := M∩X
is not necessarily maximal in X in which case M is called a novelty. By [3,
Tables 8.5 and 8.6], the complete list of maximal subgroups of an almost simple
group G with socle PSU(3, q) are known, and in this case, there arose only four
novelties, see [3, 9, 12, 16].
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Lemma 2.4 ([3, Tables 8.5 and 8.6]). Let G be a group such that X =
PSU(3, q)EG 6 Aut(X), and let M be a maximal subgroup of G not containing
X. Then M0 = X ∩M , is (isomorphic to) one of the following subgroups:

(a) ˆ[q]1+2 : (q2 − 1);
(b) ˆGU(2, q);
(c) ˆ(q2 − q + 1) : 3 with q 6= 3, 5 (novelty if q = 5);
(d) ˆ(q + 1)2 : S3 (novelty if q = 5);
(e) SO3(q) with q > 7, q odd;
(f) ˆSU(3, q0) · gcd(3, q+1

q0+1 ), where q = qr0, r odd and prime;

(g) 32 : Q8 with p = q ≡ 2 (mod 3), q > 11 (novelty if q = 5);
(h) PSL(2, 7) with q 6= 5, p = q ≡ 3, 5, 6 (mod 7) (novelty if q = 5);
(i) A6 with p = q ≡ 11, 14 (mod 15);
(j) A6 · 23 with q = 5;
(k) A7 with q = 5.

3. Proof of Theorem 1.1

In this section, suppose that D is a symmetric (v, k, λ) design and G is an
almost simple automorphism group G with simple socle X := PSU(3, q), where
q = pf (p prime), that is to say, X CG 6 Aut(X). Suppose also that V is the
underlying vector space of X over the finite field Fq2 .

Let now G be a flag-transitive and point-primitive automorphism group of
D. Then the point-stabiliser M := Gα is maximal in G [5, Corollary 1.5A].
Set M0 := X ∩M . So M0 is (isomorphic to) one of the subgroups listed in
Lemma 2.4(a)-(k). Moreover, by Lemma 2.2,

v =
|X|
|M0|

=
q3(q2 − 1)(q3 + 1)

gcd(3, q + 1) · |M0|
.(3.1)

Note that |Out(X)| = 2f · gcd(3, q + 1). Therefore, by Lemma 2.1(b) and
Lemma 2.2(b),

k | 2f · gcd(3, q + 1) · |M0|.(3.2)

In what follows, considering possible structure for the subgroup M0 as in
Lemma 2.4(b)-(k), we prove that none of these cases could occur.

Lemma 3.1. The subgroup M0 cannot be ˆGU(2, q).

Proof. Let V be the underlying vector space of X = PSU(3, q) over the finite
field Fq2 . By (3.1), we have that v = q2(q2−q+1). It follows from [15, Lemma
3.9] and Lemma 2.1(d) that k divides λ(q2−1)(q+ 1), and by Lemma 2.1(c), k
divides λ gcd(q(q2 − 1)(q+ 1), q4 − q3 + q2 − 1) = 16λ(q− 1), so k | 16λ(q− 1).
Let now m be a positive integer such that mk = 16λ(q−1). By Lemma 2.1(a),
k(k − 1) = λ(v − 1), and so

k =
m(q3 + q + 1)

16
+ 1.(3.3)
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Moreover, k | 6fq(q2 − 1)(q + 1), and by (3.3), we have k | 6f(q + 1)(m(q3 +
q + 1) + 16). Thus

k | 6fm(2q2 + 3q + 1) + 96f(q + 1),(3.4)

and so 16k < 96fm(2q2 + 3q + 1) + 16 · 96fm(q + 1). By (3.3), we have that
m(q3 + q + 1) + 16 < 96fm(2q2 + 19q + 17). Therefore q/2 < 96f + 5. This
inequality holds when

p = 2, f 6 11;
p = 3, f 6 6;
p = 5, f 6 4;
p = 7, f 6 3;
p ∈ {11, 13, 17, 19}, f 6 2;
23 6 p 6 193 (prime), f = 1.

(3.5)

The possible values of k and v are listed in Table 1 below. For such param-
eters k and v as in Table 1, by straightforward calculation, we observe that
Lemma 2.1(a) does not hold, which is a contradiction. �

Lemma 3.2. The subgroup M0 cannot be ˆ(q2 − q + 1) : 3.

Proof. Here, by (3.1), we have v = q3(q2 − 1)(q + 1)/3. Note that |Out(X)| =
2 · gcd(3, q + 1) · f . Then by (3.2), we conclude that k divides 6f(q2 − q + 1).
By [20, 30], we may assume that λ > 4, and so Lemma 2.1(b) yields

4q3(q2 − 1)(q + 1)

3
6 λv < k2 6 36f2(q2 − q + 1)2.

Then q3(q2 − 1)(q + 1) < 27f2(q2 − q + 1)2. It is easy to observe that q2 <
q3(q2−1)(q+1)

(q2−q+1)2 for q > 2. Then q2 < 27f2. This inequality holds when

p = 2, f 6 4;
p = 3, f 6 2;
p = 5, f = 1.

(3.6)

Recall that k is a divisor of 6f(q2 − q + 1). Then, for each q = pf with p
and f as in (3.6), the possible values of k and v are listed in Table 2 below.
It is a contradiction as for each k and v as in Table 2, v − 1 dose not divide
k(k − 1). �

Lemma 3.3. The subgroup M0 cannot be ˆ(q + 1)2 : S3.

Proof. The argument here is the same as proof of Lemma 3.2. By (3.1), we
have v = q3(q−1)(q2−q+1)/6, and since |Out(X)| = 2f ·gcd(3, q+1), it follows
from (3.2) that k divides 12f(q + 1)2. As λ is at least 4, by Lemma 2.1(b), we
must have

4q3(q − 1)(q2 − q + 1)

6
6 λv < k2 6 144f2(q + 1)4.
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Table 1. Possible value for k and v when p and f are as in (3.5).

q v k divides
2 12 108
3 63 576
4 208 3600
5 525 4320
7 2107 16128
8 3648 81648
9 5913 86400
11 13431 95040
13 26533 183456
16 61696 1664640
17 78897 528768
19 123823 820800
23 268203 1748736
25 375625 4867200
27 512487 9906624
29 683733 4384800
31 894691 5713920
32 1016832 32408640
37 1824877 11540448
41 2758521 17357760
43 3341143 20978496
47 4778067 29887488
49 5649553 70560000
53 7744413 48218976
59 11915463 73915200
61 13622581 84414240
64 16519168 613267200
67 19854847 122683968
71 25058811 154586880
73 28014553 172691136
79 38463283 236620800
81 42521841 1045716480
83 46893423 288138816
89 62045193 380635200

q v k divides
97 87626017 536594688
101 103040301 630482400
103 111468763 681797376
107 129866007 793758528
109 139875013 854647200
113 161617233 986864256
121 212601961 2593388160
125 242203125 4429404000
127 258112387 1573060608
128 266354688 11361676032
131 292268991 1780384320
137 349722777 2128966848
139 370634743 2255803200
149 489598653 2977020000
151 516465451 3139833600
157 603727957 3668509728
163 701607583 4261294656
167 773166747 4694554368
169 810932473 9846345600
173 890597253 5405355936
179 1020922383 6193972800
181 1067386141 6475079520
191 1323931971 8026767360
193 1380336193 8367837696
243 3472494543 105032220480
256 4278255616 206960578560
289 6951703393 83997734400
343 13801051243 249867410688
361 16936647481 204365738880
512 68585521152 3718085317632
625 152344140625 3667959360000
729 282042647433 10181391292800
1024 1098438934528 66035059200000
2048 17583600304128 1161650937655296

This implies that q3(q−1)(q2−q+1) < 216f2(q+1)4, and since q+1 6 (3/2)q,
we have

q3(q − 1)(q2 − q + 1) < 216f2(q + 1)4 6 (
37

2
)f2q4.

It follows that

(q − 1)(q2 − q + 1) < (
37

2
)f2q,
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Table 2. Possible value for k and v when q = pf with p and
f as in (3.6).

q 2 3 4 5 8 9 16

v 24 288 1600 6000 96768 194400 5918720
k divides 18 42 156 126 1026 876 5784

and so q2 − 2q + 2 − 1/q < (37/2)f2. Therefore, (q − 1)2 < (37/2)f2, and
since (16/81)(q − 1)2 < q3(q − 1)(q2 − q + 1)/(q + 1)4, we must have q = pf <

(27
√

6/2)f + 1. This is true only when

p = 2, f 6 8;
p = 3, f 6 4;
p = 5, 7, f 6 2;
11 6 p 6 31, f = 1.

(3.7)

Table 3. Possible value for k and v when q = pf is as in (3.7).

q v k divides

2 4 108
3 63 192
4 416 600
5 1750 432
7 14749 768
8 34048 2916
9 70956 2400
11 246235 1728
13 689858 2352
16 2467840 13872
17 3576664 3888
19 7057911 4800

q v k divides

23 22618453 6912
25 37562500 16224
27 59960979 28224
29 92531866 10800
31 138677105 12288
32 168116224 65340
49 2214624776 60000
64 11100880896 304200
81 45923588280 322752
128 721643634688 1397844
256 46547421102080 6340704

Since k is a divisor of 12f(q+1)2, for each q = pf with p and f as in (3.7), the
possible values of k and v are listed in Table 3. This leads us to a contradiction
as, for parameters k and v as in Table 3, the fraction k(k − 1)/(v − 1) is not
integer. �

Lemma 3.4. The subgroup M0 cannot be SO3(q) with q > 7, odd.

Proof. By (3.1), we have that v = q2(q3+1)/d with d = gcd(3, q+1). It follows
from (3.2) that k divides 2dfq(q2 − 1), and so k is a divisor of 6fq(q2 − 1).

Moreover, Lemma 2.1(a) implies that k divides λ(v−1). Note by Lemma 2.3
that v − 1 is coprime to q. Thus k divides 6λf gcd(q2 − 1, v − 1). Let d = 1,
then v − 1 = q5 + q2 − 1, and so gcd(q2 − 1, v − 1) = gcd(q2 − 1, q) = 1. Thus,
in this case k divides 6λf . Let now d = 3. Then v − 1 = (q5 + q2 − 3)/3, and
so gcd(q2 − 1, 3(v − 1)) = gcd(q2 − 1, q − 2) = gcd(q − 2, 3) = 1 or 3. Since k
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Table 4. Possible value for k and v when q = pf is as in (3.9).

q v k divides

7 16856 672
9 59130 2880
11 53724 7920
13 371462 4368

q v k divides

17 473382 29376
25 9766250 62400
27 4783212 117936

divides 6λf gcd(q2 − 1, v − 1), we conclude that k divides 18λf . Therefore in
either of case, k is a divisor of 18λf . Then there exists a positive integer m
such that mk = 18λf . Since k(k − 1) = λ(v − 1), it follows that

18λf

m
(k − 1) =

λ(q5 + q2 − d)

d
,

where d = gcd(3, q + 1). Thus

k =
m(q5 + q2 − d)

18df
+ 1.(3.8)

Since d = 1 or 3, we have by (3.2) that k | 6fq(q2 − 1). Then (3.8) yields
m(q5 + q2 − d) 6 108df2q(q2 − 1). Since also m > 1 and d 6 3, we have that
q2 < q5 + q2 − 3/q(q2 − 1) 6 324f2. This inequality only holds for

q ∈ {7, 9, 11, 13, 17, 25, 27}.(3.9)

For these values of q, since k divides 2dfq(q2 − 1), the possible values of k can
be found as in Table 4. This leads us to a contradiction as for each value of v
and k as in Table 4, the fraction k(k − 1)/(v − 1) is not integer. �

Lemma 3.5. The subgroup M0 cannot be ˆSU(3, q0) · c, where q = qr0, r odd

prime and c := gcd
(

3, q+1
q0+1

)
.

Proof. In this case, |M0| = c · q30(q20 − 1)(q30 + 1)/ gcd(3, q + 1). It follows
from (3.1) that

v =
1

c
· q

3r
0 (q2r0 − 1)(q3r0 + 1)

q30(q20 − 1)(q30 + 1)
.(3.10)

Note by (3.2) that k divides 6fq30(q20 − 1)(q30 + 1). We may assume that λ > 4
by [20, 30]. Moreover, c ∈ {1, 3}, and f2 6 qr0 as q = qr0. Since λv < k2 by
Lemma 2.1(b), we must have

4q3r0 (q2r0 − 1)(q3r0 + 1)

3q30(q20 − 1)(q30 + 1)
6 λv < k2 6 36f2q60(q20 − 1)2(q30 + 1)2

6 36q6+r0 (q20 − 1)2(q30 + 1)2.

Therefore q3r0 (q2r0 − 1)(q3r0 + 1) < 27q9+r0 (q20 − 1)3(q30 + 1)3. Since q8r−1
0 6

q3r0 (q2r0 − 1)(q3r0 − 1) and q9+r0 (q20 − 1)3(q30 − 1)3 6 q24+r0 , we have that q8r−1
0 <
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27q24+r0 , and so q7r−25
0 < 27. But q0 > 2 and r is odd. Then r = 3. Therefore,

by (3.10), we have that

v =
1

c
· q

6
0(q30 − 1)(q90 + 1)

q20 − 1
,(3.11)

where c := gcd
(

3, q+1
q0+1

)
. By (3.2), k divides 6fq30(q20 − 1)(q30 + 1). It follows

from Lemma 2.1(b), that

λ
q60(q30 − 1)(q90 + 1)

c(q20 − 1)
< k2 6 36f2q60(q20 − 1)2(q30 + 1)2.

Therefore

λ < 36cf2
(q20 − 1)3(q30 + 1)2

(q30 − 1)(q90 + 1)
6 108f2.(3.12)

We now observe by Lemma 2.3 that v−1 and q are coprime, and since k divides
both 6fq30(q20 − 1)(q30 + 1) and λ(v− 1), again by Lemma 2.1(b), we must have

λ
q60(q30 − 1)(q90 + 1)

c(q20 − 1)
< k2 6 36λ2f2(q20 − 1)2(q30 + 1)2,

and so

q60(q30 − 1)(q90 + 1)

(q20 − 1)3(q30 + 1)2
< 36λf2c.(3.13)

Since c 6 3 and λ 6 108f2 by (3.12), it follows that q60 < 23328f4. Since also
q0 is at least 2, we conclude that 22f < 23328 · f4, and this holds for f 6 15.
Then q0 6 32. Considering (3.13), q0 is one of the numbers: 2, 3, 4, 5, 7, 8,
9, 11, 13, 16, 17, 25, 27, 29, 31, 32, 1923. Inspecting each such value of q0, we
observe by (3.10) that v = 896 is the only possible value when q0 = 2. In this
case, k divides 6fq30(q20−1)(q30 +1) = 1296. But by straightforward calculation,
v−1 = 895 is not a divisor of k(k−1), for each divisor k of 1296, contradicting
Lemma 2.1(a). �

Lemma 3.6. The subgroup M0 cannot be 32 : Q8 with q > 11 and p = q ≡
2 (mod 3).

Proof. By (3.1), we have that

v =
q3(q2 − 1)(q3 + 1)

72 · gcd(3, q + 1)
.(3.14)

Note that |Out(X)| = 2f · gcd(3, q + 1). Then by (3.2), we conclude that k
divides 432f . Since λ > 4, Lemma 2.1(b) implies that

4q3(q2 − 1)(q3 + 1)

216
6 λv < k2 6 4322f2.

Therefore q3(q2 − 1)(q3 + 1) < 10077696f2 and this implies that q ∈ {3, 5, 7}
but this violates q > 11. �
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Lemma 3.7. The subgroup M0 cannot be PSL(2, 7) with p=q≡3, 5, 6 (mod 7).

Proof. Note that f = 1 as q = p by (3.1), we have that

v =
q3(q2 − 1)(q3 + 1)

168 · gcd(3, q + 1)
.(3.15)

As f = 1, by (3.2) that k divides 1008. Moreover, since λ > 4, by Lemma 2.1(b),

4q3(q2 − 1)(q3 + 1)

504
6 λv < k2 6 10082.

Then q3(q2 − 1)(q3 + 1) < 128024064. Note that q ≡ 3, 5, 6 (mod 7). Thus
q ∈ {3, 11}. Note that q 6= 11 as v given in (3.15) must be integer. If q = 3, then
v = 36, but v−1 = 35 does not divides k(k−1) which is also a contradiction. �

Lemma 3.8. The subgroup M0 cannot be A6, with p = q ≡ 11, 14 (mod 15).

Proof. By (3.1), we have that

v =
q3(q2 − 1)(q3 + 1)

360 · gcd(3, q + 1)
.(3.16)

Note by (3.2) that k divides 2160f . By [20, 30], we may only focus on λ > 4,
and so Lemma 2.1(b) yields

4q3(q2 − 1)(q3 + 1)

1080
6 λv < k2 6 21602f2.

This follows that

q3(q2 − 1)(q3 + 1) < 1259712000f2.(3.17)

Since q8 < 2q3(q2 − 1)(q3 + 1) and q = pf is odd, (3.17) implies that q ∈
{3, 5, 7, 9, 11, 13}. Since also the fraction (3.16) must be integer, q ∈ {5, 9, 11},
and since p = q ≡ 11, 14 (mod 15), the only acceptable value for q is q = 11. So
v = 196988 and k divides 2160. We then easily observe that, for each divisor k
of 2160, the fraction k(k−1)/(v−1) is not integer, which is a contradiction. �

Lemma 3.9. The subgroup M0 cannot be A6 · 23 with q = 5.

Proof. By (3.1), we have that

v =
q3(q2 − 1)(q3 + 1)

720 · gcd(3, q + 1)
= 175.

It follows from (3.2) that k divides 4320. In this case, for each possible value
of k the fraction k(k − 1)/(v − 1) is not integer, which is a contradiction. �

Lemma 3.10. The subgroup M0 cannot be A7 with q = 5.
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Proof. By (3.1), we have that

v =
q3(q2 − 1)(q3 + 1)

2520 · gcd(3, q + 1)
= 50.

Note by (3.2) that k divides 15120. Moreover, Lemma 2.1(a) implies that k
divides λ(v−1). Then k divides gcd(15120, λ(v−1)), and so k divides 7λ. Thus
there exists a positive integer m such that mk = 7λ. Since k(k−1) = λ(v−1),
it follows that k = 7m + 1. Since k divides 15120 and k < v, we have k = 15.
This is a contradiction as v − 1 = 49 does not divide k(k − 1). �

3.1. Proof of Theorem 1.1

Suppose that D is a symmetric (v, k, λ) design and G is an almost simple
automorphism group with simple socle X = PSU(3, q). If G is a flag-transitive
and point-primitive automorphism group of D, then the point-stabiliser M :=
Gα is maximal in G, and so M0 := X∩M is isomorphic to one of the subgroups
in Lemma 2.4. It follows from Lemmas 3.1–3.10 that M0 = ˆ[q]1+2 : (q2 − 1).
In this case, by (3.1), we have that v = q3 + 1. Then by [15, Lemma 3.9] and
Lemma 2.1(c), k divides λq3. Let now m be a positive integer such that mk =
λq3. Since λ < k, we have that m < q3. By Lemma 2.1(a), k(k−1) = λ(v−1),
and so λq3(k− 1)/m = λq3. Thus, k = m+ 1 and λ = (m2 +m)/q3 which the
latter statement implies that q3 | m2 +m. Thus, q3 divides either m, or m+ 1.
Since m < q3, it follows that q3 divides m+ 1, and so q3 = m+ 1. Therefore,
λ = q3 − 1 = k− 1 and v = q3 + 1, that is to say, D is a (v, v− 1, v− 2) design
with b =

(
v
k

)
, which is a complete design.
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