Bull. Korean Math. Soc. **54** (2017), No. 6, pp. 1991–1999 https://doi.org/10.4134/BKMS.b160690 pISSN: 1015-8634 / eISSN: 2234-3016

WEAK AMENABILITY OF THE LAU PRODUCT OF BANACH ALGEBRAS DEFINED BY A BANACH ALGEBRA MORPHISM

Mohammad Ramezanpour

ABSTRACT. Let A and B be two Banach algebras and $T: B \to A$ be a bounded homomorphism, with $||T|| \leq 1$. Recently, Dabhi, Jabbari and Haghnejad Azar (*Acta Math. Sin. (Engl. Ser.*) **31** (2015), no. 9, 1461– 1474) obtained some results about the *n*-weak amenability of $A \times_T B$. In the present paper, we address a gap in the proof of these results and extend and improve them by discussing general necessary and sufficient conditions for $A \times_T B$ to be *n*-weakly amenable, for an integer $n \geq 0$.

1. Introduction

Let A and B be Banach algebras and let $T: B \to A$ be a continuous homomorphism with $||T|| \leq 1$. Then the Cartesian product space $A \times B$ equipped with the norm ||(a, b)|| = ||a|| + ||b|| and the algebra multiplication

 $(a,b)(c,d) = (ac + aT(d) + T(b)c, bd) \quad (a,c \in A, b, d \in B),$

is a Banach algebra which is called the morphism product of A and B and is denoted by $A \times_T B$. This type of product was first introduced by Bhatt and Dabhi in [2] for the case where A is commutative and was extended by Dabhi, Jabbari and Haghnejad Azar in [3] for the general case; see also [5]. When T = 0, this multiplication is the usual coordinatewise product and so $A \times_T B$ is in fact the direct product $A \times B$. Furthermore, let A be unital with the identity element e and let $\theta : B \to \mathbb{C}$ be a non-zero multiplicative linear functional. Define $T_{\theta} : B \to A$ as $T_{\theta}(b) = \theta(b)e$ for each $b \in B$. Then the above product with respect to T_{θ} coincides with the product investigated by Lau in [8], for certain classes of Banach algebras and followed by Sangani Monfared in [9] for the general case. Some aspects of $A \times_T B$ are investigated by many authors in [3, 5, 7, 10].

In [3] Dabhi, Jabbari and Haghnejad Azar, for an integer $n \ge 0$, investigated the *n*-weak amenability properties of $A \times_T B$. As one of the main results, they

O2017Korean Mathematical Society

Received August 18, 2016; Revised January 8, 2017; Accepted February 13, 2017.

²⁰¹⁰ Mathematics Subject Classification. 46H05, 47B47.

Key words and phrases. Banach algebra, derivation, weak amenability, T-Lau product.

showed that the *n*-weak amenability of $A \times_T B$ always implies the *n*-weak amenability of both A and B, and were able to prove the converse, under a suitable conditions on A and B; [3, Proposition 3.5].

In the present paper, we address a gap in the proof of these results and extend and improve them by discussing general necessary and sufficient conditions for $A \times_T B$ to be *n*-weakly amenable for an integer $n \ge 0$.

2. Preliminaries

Let A be a Banach algebra, and X be a Banach A-bimodule. A derivation from A into X is a linear mapping $D: A \to X$ satisfying

$$D(ab) = D(a)b + aD(b) \qquad (a, b \in A).$$

An instance of special importance is the inner derivations $d_x(a) = ax - xa$ defined for each $x \in X$. For a Banach A-bimodule X, the dual X^* of X equipped with the module actions (fa)(x) = f(ax) and (af)(x) = f(xa) for all $a \in A, x \in X$ and $f \in X^*$, is a Banach A-bimodule. Similarly, the n-th dual $X^{(n)}$ of X is a Banach A-bimodule. In particular, $A^{(n)}$ is a Banach A-bimodule.

The concept of weak amenability was first introduced by Bade, Curtis and Dales in [1] for commutative Banach algebras. A commutative Banach algebra A is called weakly amenable if every bounded derivation from A into every symmetric Banach A-bimodule is zero. This is equivalent to the fact that every bounded derivation from A into the dual Banach module A^* is inner. The latter was used by Johnson in [6] as a definition of weak amenability for the non-commutative case. The concept of n-weak amenability was initiated by Dales, Ghahramani and Grønbæk in [4], where they presented many important properties of this sort of Banach algebra. A Banach algebra A is said to be n-weakly amenable, for an integer $n \ge 0$, if every bounded derivation from Ainto $A^{(n)}$ is inner, where $A^{(0)} = A$. Trivially, 1-weak amenability is nothing than weak amenability.

Throughout the paper we assume that n is a non-negative integer, A and B are Banach algebras and $T: B \to A$ is a continuous homomorphism with $||T|| \leq 1$. For brevity of notation we usually identify an element of A with its canonical image in $A^{(2n)}$, as well as an element of A^* with its image in $A^{(2n+1)}$. One can simply identify the underlying space of $(A \times_T B)^{(n)}$ with the Banach space $A^{(n)} \times B^{(n)}$ equipped with the norm ||(f,g)|| = ||f|| + ||g|| when n is even and the norm $||(f,g)|| = \max\{||f||, ||g||\}$ when n is odd. A direct verification reveals that $(A \times_T B)$ -module operations of $(A \times_T B)^{(n)}$ are as follows.

$(f,g)(a,b) = \bigg\{$	$ \begin{pmatrix} fa + fT(b) + T^{(n)}(g)a, gb \\ (fa + fT(b), T^{(n)}(fa) + gb \end{pmatrix} $	n is even n is odd
$(a,b)(f,g) = \bigg\{$	$ \begin{pmatrix} af + T(b)f + aT^{(n)}(g), bg \\ af + T(b)f, T^{(n)}(af) + bg \end{pmatrix} $	n is even n is odd

for $a \in A, b \in B, f \in A^{(n)}$ and $g \in B^{(n)}$.

3. (2n+1)-weak amenability

In this section we clarify the relation between (2n + 1)-weak amenability of $A \times_T B$ and that of A and B. To do this we need the following result which characterize the continuous derivations from $A \times_T B$ into $(A \times_T B)^{(2n+1)}$.

Lemma 3.1. A mapping $D : A \times_T B \to (A \times_T B)^{(2n+1)}$ is a continuous derivation if and only if

$$D(a,b) = (D_A(b) + T_A(a), D_B(b) + T_B(a))$$

for all $a \in A$ and $b \in B$, where

- (a) $D_B: B \to B^{(2n+1)}$ and $T_A: A \to A^{(2n+1)}$ are continuous derivations.
- (b) $D_A : B \to A^{(2n+1)}$ is a bounded linear operator such that $D_A(b_1b_2) = (T_A \circ T)(b_1b_2)$ for all $b_1, b_2 \in B$ and $D_A(b)a = (T_A \circ T)(b)a$ and $aD_A(b) = a(T_A \circ T)(b)$ for all $a \in A$ and $b \in B$.
- (c) $T_B : A \to B^{(2n+1)}$ is a bounded linear operator such that $(T^{(2n+1)} \circ T_A)(a_1a_2) = T_B(a_1a_2)$ for all $a_1, a_2 \in A$ and $bT_B(a) = b(T^{(2n+1)} \circ T_A)(a)$ and $T_B(a)b = (T^{(2n+1)} \circ T_A)(a)b$ for all $a \in A$ and $b \in B$.

Moreover, $D = d_{(f,g)}$ for some $f \in A^{(2n+1)}$ and $g \in B^{(2n+1)}$ if and only if $D_B = d_g$, $T_A = d_f$, $T_B = T^{(2n+1)} \circ T_A$ and $D_A = T_A \circ T$.

Proof. A straightforward verification shows that $D: A \times_T B \to (A \times_T B)^{(2n+1)}$ is a bounded linear map if and only if there exist bounded linear mappings $T_A: A \to A^{(2n+1)}, D_B: B \to B^{(2n+1)}, T_B: A \to B^{(2n+1)}$ and $D_A: B \to A^{(2n+1)}$ such that $D(a, b) = (D_A(b) + T_A(a), D_B(b) + T_B(a))$ for all $a \in A$ and $b \in B$. Moreover, D is a derivation if and only if

$$D((a,b)(c,d)) = D(a,b)(c,d) + (a,b)D(c,d)$$

for all $a, c \in A$ and $b, d \in B$. This is holds if and only if

$$T_A(ac + aT(d) + T(b)c) + D_A(bd)$$

= $T_A(a)c + D_A(b)c + T_A(a)T(d) + D_A(b)T(d)$
+ $aT_A(c) + aD_A(d) + T(b)T_A(c) + T(b)D_A(d)$

and

$$D_B(bd) + T_B(ac + aT(d) + T(b)c)$$

= $D_B(b)d + T_B(a)d + T^{(2n+1)}(T_A(a)c) + T^{(2n+1)}(D_A(b)c)$
+ $bD_B(d) + bT_B(c) + T^{(2n+1)}(aT_A(c)) + T^{(2n+1)}(aD_A(d))$

for all $a, c \in A$ and $b, d \in B$. By choosing suitable values of a, b, c and d, we deduce that these equations hold if and only if T_A and D_B are derivations, $D_A(bd) = D_A(b)T(d) + T(b)D_A(d)$, $(T_A \circ T)(b) = D_A(b)a$, $a(T_A \circ T)(b) = aD_A(b)$, $T_B(ac) = (T^{(2n+1)} \circ T_A)(ac)$, $T_B(T(b)c) = bT_B(c) + T^{(2n+1)}(D_A(b)c)$ and $T_B(aT(d)) = T_B(a)d + T^{(2n+1)}(aD_A(d))$ for all $a, c \in A$ and $b, d \in B$. By the appropriate using of [3, Lemma 3.4] and that T_A is a derivation and

 $T(B) \subseteq A$, we conclude that the above statements hold if and only if conditions (a)-(c) satisfied.

Now let $D = d_{(f,q)}$ for some $f \in A^{(2n+1)}$ and $g \in B^{(2n+1)}$. Let $a \in A$ then

$$(T_A(a), T_B(a)) = d_{(f,g)}(a, 0) = (af - fa, T^{(2n+1)}(af - fa)).$$

Thus $T_A = d_f$ and $T_B = T^{(2n+1)} \circ T_A$. Similarly, $D_B = d_g$ and $D_A = T_A \circ T$. Conversely, suppose that $T_A = d_f$, $D_B = d_g$ for some $f \in A^{(2n+1)}$ and $g \in B^{(2n+1)}$ and $T_B = T^{(2n+1)} \circ T_A$ and $D_A = T_A \circ T$. Then $D_A(b) = fT(b) - T(b)f$ and $T_B(a) = T^{(2n+1)}(af - fa)$ for all $a \in A$ and $b \in B$. Therefore

$$D(a,b) = (T_A(a) + D_A(b), D_B(b) + T_B(a))$$

= $(af - fa + fT(b) - T(b)f, bg - gb + T^{(2n+1)}(af - fa))$
= $(a,b)(f,g) - (f,g)(a,b)$

for all $(a, b) \in A \times_T B$. Consequently, $D = d_{(f,q)}$.

For Banach algebra A and Banach A-bimodule X, the annihilator of A in X is defined by

$$\operatorname{Ann}_X(A) = \{ x \in X : xa = 0 = ax \text{ for all } a \in A \}.$$

It is easy to see that $\operatorname{Ann}_X(A) = \{0\}$ if and only if $\langle AX \cup XA \rangle$, the linear span of $AX \cup XA$, is dense in X. It is shown in [3, Proposition 3.5, part (7)] that if $A \times_T B$ is (2n + 1)-weakly amenable, then both A and B are (2n + 1)weakly amenable. It is also shown that, the converse holds if $\operatorname{Ann}_{A^{(2n+1)}}(A)$ and $\operatorname{Ann}_{B^{(2n+1)}}(B)$ are trivial. In the next theorem, we characterize the (2n + 1)weak amenability of $A \times_T B$ in terms of A and B, which also shows that the hypothesis of triviality of $\operatorname{Ann}_{A^{(2n+1)}}(A)$ and $\operatorname{Ann}_{B^{(2n+1)}}(B)$ in [3, Proposition 3.5] is superfluous.

Theorem 3.2. The Banach algebra $A \times_T B$ is (2n+1)-weakly amenable if and only if both A and B are (2n+1)-weakly amenable.

Proof. To prove the necessity, suppose that $A \times_T B$ is (2n+1)-weakly amenable. Let $D : A \to A^{(2n+1)}$ be a continuous derivation. Define $\overline{D} : A \times_T B \to (A \times_T B)^{(2n+1)}$ by $\overline{D}(a,b) = (D(T(b)) + D(a), T^{(2n+1)}(D(a)))$. Then Lemma 3.1 implies that \overline{D} is a continuous derivation, so it is inner. Therefore A is (2n + 1)-weakly amenable. Now let $D : B \to B^{(2n+1)}$ be a continuous derivation. Then $\overline{D} : A \times_T B \to (A \times_T B)^{(2n+1)}$ defined by $\overline{D}(a,b) = (0,D(b))$ is a continuous derivation and hence it is inner. Lemma 3.1 implies that D is inner, as required.

To prove the sufficiency, suppose that A and B are (2n+1)-weakly amenable. Let $\overline{D} : A \times_T B \to (A \times_T B)^{(2n+1)}$ be a continuous derivation. By Lemma 3.1, \overline{D} enjoys the presentation

$$\overline{D}(a,b) = (D_A(b) + T_A(a), D_B(b) + T_B(a)); \qquad (a \in A, b \in B),$$

in which, the component mappings D_A , D_B , T_A and T_B are satisfying the conditions (a)-(c) Lemma 3.1. So, D_B and T_A are inner derivations. Since A and B are (2n + 1)-weakly amenable, it follows that A^2 and B^2 are dense in A and B respectively, [4, Proposition 1.2]. From condition (b) and (c) Lemma 3.1, we get $D_A = T_A \circ T$ and $T_B = T^{(2n+1)} \circ T_A$. It follows that, \overline{D} is inner. Therefore, $A \times_T B$ is (2n + 1)-weakly amenable, as claimed.

4. (2n)-weak amenability

In this section we are concerned with the conditions for the (2n)-weak amenability of $A \times_T B$. The next result, which is devoted to the even case, needs a similar argument used in Lemma 3.1.

Lemma 4.1. A mapping $D: A \times_T B \to (A \times_T B)^{(2n)}$ is a continuous derivation if and only if

$$D(a,b) = (D_A(b) + T_A(a), D_B(b) + T_B(a))$$

for all $a \in A$ and $b \in B$, where

- (a) $D_B: B \to B^{(2n)}$ is a continuous derivation.
- (b) $D_A : B \to A^{(2n)}$ is a bounded linear operator such that $D_A(b_1b_2) = T(b_1)D_A(b_2) + D_A(b_1)T(b_2)$ for all $b_1, b_2 \in B$.
- (c) $T_B: A \to B^{(2n)}$ is a bounded linear operator such that $T_B(a_1a_2) = 0$ for all $a_1, a_2 \in A$ and $bT_B(a) = T_B(a)b = 0$ for all $a \in A$ and $b \in B$.
- (d) $T_A : A \to A^{(2n)}$ is a bounded linear operator such that $T_A(T(b)a) = T^{(2n)}(D_B(b))a + D_A(b)a + T(b)T_A(a)$ and $T_A(aT(b)) = aT^{(2n)}(D_B(b)) + aD_A(b) + T_A(a)T(b)$ for all $a \in A$ and $b \in B$ and $T_A(a_1a_2) = a_1T_A(a_2) + T_A(a_1)a_2 + T^{(2n)}(T_B(a_1))a_2 + a_1T^{(2n)}(T_B(a_2))$ for $a_1, a_2 \in A$.

Moreover, $D = d_{(f,g)}$ for some $f \in A^{(2n)}$ and $g \in B^{(2n)}$ if and only if $D_B = d_g$, $T_A = d_f D_A = T_A \circ T - T^{(2n)} \circ D_B$ and $T_B = 0$.

In the next, we gives general necessary and sufficient conditions for $A \times_T B$ to be (2n)-weakly amenable.

Theorem 4.2. The Banach algebra $A \times_T B$ is (2n)-weakly amenable if and only if

- (1) both A and B are (2n)-weakly amenable.
- (2) If $D: B \to A^{(2n)}$ is a bounded linear operator such that $D(b_1b_2) = 0$ for all $b_1, b_2 \in B$ and aD(b) = D(b)a = 0 for all $a \in A$ and $b \in B$, then D = 0.
- (3) If $S: A \to B^{(2n)}$ is a bounded linear operator such that $S(a_1a_2) = 0$ for all $a_1, a_2 \in A$ and S(a)b = bS(a) = 0 for all $a \in A$ and $b \in B$, then S = 0.

Proof. To prove the necessity, suppose that $A \times_T B$ is (2*n*)-weakly amenable. Let $D: A \to A^{(2n)}$ be a continuous derivation. Then $\overline{D}: A \times_T B \to (A \times_T B)^{(2n)}$ defined by $\overline{D}(a,b) = (D(T(b)) + D(a), 0)$ is a continuous derivation and hence it is inner. It follows from Lemma 4.1, that D is inner. Therefore, A is (2n)-weakly amenable. To prove that B is also (2n)-weakly amenable, for a continuous derivation $D: B \to B^{(2n)}$, define $\overline{D}: A \times_T B \to (A \times_T B)^{(2n)}$ by $\overline{D}(a,b) = (-T^{(2n)}(D(b)), D(b))$. Then \overline{D} is a continuous derivation and hence it is inner. So D is inner.

Let $D: B \to A^{(2n)}$ be a bounded linear operator such that $D(b_1b_2) = 0$ for all $b_1, b_2 \in B$ and aD(b) = D(b)a = 0 for all $a \in A$ and $b \in B$. By Lemma 4.1, we conclude that $\overline{D}: A \times_T B \to (A \times_T B)^{(2n)}$ defined by $\overline{D}(a, b) = (D(b), 0)$ is a continuous derivation and so it is inner. Thus D = 0. This proves (2).

To prove (3), we need a similar argument. Indeed, if $S: A \to B^{(2n)}$ be a bounded linear operator such that $S(a_1a_2) = 0$ for all $a_1, a_2 \in A$ and S(a)b = bS(a) = 0 for all $a \in A$ and $b \in B$. Then Lemma 4.1 implies that $\overline{D}: A \times_T B \to (A \times_T B)^{(2n)}$ given by $\overline{D}(a, b) = (-T^{(2n)}(S(a)), S(a))$, is a continuous derivation and so it is inner. Hence, S = 0. This completes the proof of necessity.

For sufficiency, suppose that $\overline{D} : A \times_T B \to (A \times_T B)^{(2n)}$ is a continuous derivation. By Lemma 4.1, \overline{D} is in the form

$$\overline{D}(a,b) = (D_A(b) + T_A(a), D_B(b) + T_B(a)); \qquad (a \in A, b \in B),$$

in which, the component mappings D_A, D_B, T_A and T_B satisfying the conditions (a)-(d) Lemma 4.1. By condition (3), $T_B = 0$. This implies that T_A is a continuous derivation. By conditions (1), D_B and T_A are inner derivation. Thus there are $f \in A^{2n}$ and $g \in B^{(2n)}$ such that $T_A = d_f$ and $D_B = d_g$. Now define $D: B \to A^{(2n)}$ by $D = D_A - T_A \circ T + T^{(2n)} \circ D_B$. From condition (d) Lemma 4.1, it follows that D satisfies in condition (2). So, D = 0. This shows that $D_A = T_A \circ T - T^{(2n)} \circ D_B$. Therefore \overline{D} is inner, by Lemma 4.1. This proves that $A \times_T B$ is (2n)-weakly amenable, as claimed.

Proposition 4.3. Condition (2) of Theorem 4.2 holds if and only if $\langle B^2 \rangle$ is dense in B or $\operatorname{Ann}_{A^{(2n)}}(A) = \{0\}.$

Proof. Take a non-zero $f \in A^{(2n)}$ with af = fa = 0 for all $a \in A$, and let $g \in B^*$ be such that $g|_{B^2} = 0$. Then $D: B \to A^{(2n)}$ defined by D(b) = g(b)f satisfies in condition (2) of Theorem 4.2, so it is zero. Thus g = 0. This shows that $\langle B^2 \rangle$ is dense in B, as required.

Using a similar argument, one can obtain the following.

Proposition 4.4. Condition (3) of Theorem 4.2 holds if and only if $\langle A^2 \rangle$ is dense in A or $\operatorname{Ann}_{B^{(2n)}}(B) = \{0\}.$

In [3, Proposition 3.5, part (6)], it has been proved that if both A and B are (2n)-weakly amenable and $\operatorname{Ann}_{B^{(2n)}}(B) = \{0\}$, then $A \times_T B$ is (2n)-weakly amenable. There appear to be some gaps in the proof presented in [3]. In details, for a continuous derivation $D: A \times_T B \to (A \times_T B)^{(2n)}$ with $D = (D_1, D_2)$, it has been shown that $D_1(0, b) = D_1(T(b), 0) - T^{(2n)}(D_2(0, b))$

for all $b \in B$. By a careful look at their proof, we could only conclude that

$$D_1(0,b)a = \left(D_1(T(b),0) - T^{(2n)}(D_2(0,b))\right)a \text{ and} aD_1(0,b) = a\left(D_1(T(b),0) - T^{(2n)}(D_2(0,b))\right)$$

for all $a \in A$ and $b \in B$. Therefore, we believe that to achieve the equality $D_1(0,b) = D_1(T(b),0) - T^{(2n)}(D_2(0,b))$ for all $b \in B$, more assumptions, such as $\operatorname{Ann}_{A^{(2n)}}(A) = \{0\}$, are needed. If we combine Theorem 4.2 and Propositions 4.7 and 4.8, we have the following theorem which improves [3, Proposition 3.5, part (6)] and also extends [7, Theorem 3.4].

Theorem 4.5. The Banach algebra $A \times_T B$ is (2n)-weakly amenable if and only if

- (1) both A and B are (2n)-weakly amenable.
- (2) $\langle B^2 \rangle$ is dense in B or $\operatorname{Ann}_{A^{(2n)}}(A) = \{0\}.$
- (3) $\langle A^2 \rangle$ is dense in A or $\operatorname{Ann}_{B^{(2n)}}(B) = \{0\}.$

We know from [4, Proposition 1.3] that if A is weakly amenable, then $\langle A^2 \rangle$ is dense in A. Thus as a consequence of Theorem 4.5, we have the next result.

Proposition 4.6. If $A \times_T B$ is (2n)-weakly amenable, then both A and B are also (2n)-weakly amenable. The converse holds if any of the following statements holds.

- (i) $\langle A^2 \rangle$ is dense in A and $\langle B^2 \rangle$ is dense in B.
- (ii) both A and B are weakly amenable.
- (iii) $\langle B^2 \rangle$ is dense in B and $\operatorname{Ann}_{B^{(2n)}}(B) = \{0\}.$
- (iv) $\langle A^2 \rangle$ is dense in A and $\operatorname{Ann}_{A^{(2n)}}(A) = \{0\}.$
- (v) $\operatorname{Ann}_{B^{(2n)}}(B) = \{0\} and \operatorname{Ann}_{A^{(2n)}}(A) = \{0\}.$

Proposition 4.7. Let B be commutative and (2n)-weakly amenable. If T(B) is dense in A, then condition (3) of Theorem 4.2 holds.

Proof. Let $S: A \to B^{(2n)}$ be a bounded linear operator such that $S(a_1a_2) = 0$ for all $a_1, a_2 \in A$ and S(a)b = bS(a) = 0 for all $a \in A$ and $b \in B$. Then $S \circ T$ is a continuous derivation from B into $B^{(2n)}$, so it is zero. Therefore, S(T(b)) = 0 for all $b \in B$. From density of T(B) in A follows that S = 0, as required. \Box

The next result shows that, under certain condition on T, condition (3) of Theorem 4.2 follows from condition (2).

Proposition 4.8. If $T^{(2n)}$ is injective and T(B) is dense in A, then condition (3) of Theorem 4.2 follows from condition (2).

Proof. Let $S: A \to B^{(2n)}$ be a bounded linear operator such that $S(a_1a_2) = 0$ for all $a_1, a_2 \in A$ and S(a)b = bS(a) = 0 for all $a \in A$ and $b \in B$. Then $D = T^{(2n)} \circ S \circ T : B \to A^{(2n)}$ is a bounded linear operator such that $D(b_1b_2) = 0$ for all $b_1, b_2 \in B$ and aD(b) = D(b)a = 0 for all $a \in A$ and $b \in B$, so it is zero.

M. RAMEZANPOUR

Since $T^{(2n)}$ is injective, S(T(b)) = 0 for all $b \in B$. Now density of T(B) in A implies that S = 0.

As a consequence of Theorem 3.2 and Proposition 4.5, we have the following result, which extends [7, Corollay 3.5] and [5, Proposition 3.11].

Theorem 4.9. Let A and B have a bounded left (resp. right) approximate identity. Then $A \times_T B$ is n-weakly amenable if and only if both A and B are n-weakly amenable.

As a consequence of Theorem 4.9, with $A = \mathbb{C}$ and a non-zero multiplicative linear functional $T: B \to \mathbb{C}$, we have the next result.

Corollary 4.10. The Banach algebra $\mathbb{C} \times_T B$ is n-weakly amenable if and only if B is n-weakly amenable.

Let A be unital and $\theta: B \to \mathbb{C}$ be a non-zero multiplicative linear functional. Define $T_{\theta}(b) := \theta(b)\mathbf{1}$. Then $A \times_{T_{\theta}} B$ is the θ -Lau product $A \times_{\theta} B$, [9]. As a consequence of Theorem 4.9, we have the next result which has already proved in [7, Theorem 3.1].

Corollary 4.11. Let A be unital and θ be a non-zero multiplicative linear functional on B. Then $A \times_{\theta} B$ is n-weakly amenable if and only if A and B are n-weakly amenable.

As another consequence of Theorem 4.9, we have the next result.

Corollary 4.12. Suppose that $a \in A$ be an idempotent and $T_a : \mathbb{C} \to A$ given by $T_a(1) = a$, then $A \times_{T_a} \mathbb{C}$ is n-weakly amenable if and only if A is n-weakly amenable.

Acknowledgments. The author would like to thanks the referee for his/her useful comments and suggestions.

References

- G. W. Bade, P. C. Curtis, and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), no. 2, 359–377.
- [2] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Law product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87 (2013), no. 2, 195–206.
- [3] P. A. Dabhi, A. Jabbari, and K. Haghnejad Azar, Some notes on amenability and weak amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 9, 1461–1474.
- [4] H. G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), no. 1, 19–54.
- [5] H. Javanshiri and M. Nemati, On a certain product of Banach algebras and some of its properties, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. sci. 15 (2014), no. 3, 219–227.
- [6] B. E. Johnson, Derivations from $L^1(G)$ into $L^1(G)$ and $L^{\infty}(G)$, Harmonic analysis (Luxembourg, 1987), 191198, Lecture Notes in Math., 1359, Springer, Berlin, 1988.

- [7] A. R. Khoddami, n-weak amenability of T-Lau product of Banach algebras, Chamchuri J. Math. 5 (2013), 57–65.
- [8] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), no. 3, 161–175.
- [9] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), no. 3, 277–294.
- [10] M. Nemati and H. Javanshiri, Some homological and cohomological notions on T-Lau product of Banach algebras, Banach J. Math. Anal. 9 (2015), no. 2, 183–195.

MOHAMMAD RAMEZANPOUR SCHOOL OF MATHEMATICS AND COMPUTER SCIENCE DAMGHAN UNIVERSITY P. O. Box 36716, DAMGHAN 41167, IRAN *E-mail address*: ramezanpour@du.ac.ir, md_ramezanpour@yahoo.com