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WEAK AMENABILITY OF THE LAU PRODUCT

OF BANACH ALGEBRAS DEFINED BY

A BANACH ALGEBRA MORPHISM

Mohammad Ramezanpour

Abstract. Let A and B be two Banach algebras and T : B → A be a
bounded homomorphism, with ‖T‖ ≤ 1. Recently, Dabhi, Jabbari and

Haghnejad Azar (Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 9, 1461–

1474) obtained some results about the n-weak amenability of A ×T B.
In the present paper, we address a gap in the proof of these results and

extend and improve them by discussing general necessary and sufficient
conditions for A×T B to be n-weakly amenable, for an integer n ≥ 0.

1. Introduction

Let A and B be Banach algebras and let T : B → A be a continuous homo-
morphism with ‖T‖ ≤ 1. Then the Cartesian product space A × B equipped
with the norm ‖(a, b)‖ = ‖a‖+ ‖b‖ and the algebra multiplication

(a, b)(c, d) = (ac+ aT (d) + T (b)c, bd) (a, c ∈ A, b, d ∈ B),

is a Banach algebra which is called the morphism product of A and B and
is denoted by A ×T B. This type of product was first introduced by Bhatt
and Dabhi in [2] for the case where A is commutative and was extended by
Dabhi, Jabbari and Haghnejad Azar in [3] for the general case; see also [5].
When T = 0, this multiplication is the usual coordinatewise product and so
A×T B is in fact the direct product A×B. Furthermore, let A be unital with
the identity element e and let θ : B → C be a non-zero multiplicative linear
functional. Define Tθ : B → A as Tθ(b) = θ(b)e for each b ∈ B. Then the above
product with respect to Tθ coincides with the product investigated by Lau in
[8], for certain classes of Banach algebras and followed by Sangani Monfared
in [9] for the general case. Some aspects of A ×T B are investigated by many
authors in [3, 5, 7, 10].

In [3] Dabhi, Jabbari and Haghnejad Azar, for an integer n ≥ 0, investigated
the n-weak amenability properties of A×T B. As one of the main results, they
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showed that the n-weak amenability of A ×T B always implies the n-weak
amenability of both A and B, and were able to prove the converse, under a
suitable conditions on A and B; [3, Proposition 3.5].

In the present paper, we address a gap in the proof of these results and extend
and improve them by discussing general necessary and sufficient conditions for
A×T B to be n-weakly amenable for an integer n ≥ 0.

2. Preliminaries

Let A be a Banach algebra, and X be a Banach A-bimodule. A derivation
from A into X is a linear mapping D : A→ X satisfying

D(ab) = D(a)b+ aD(b) (a, b ∈ A).

An instance of special importance is the inner derivations dx(a) = ax − xa
defined for each x ∈ X. For a Banach A-bimodule X, the dual X∗ of X
equipped with the module actions (fa)(x) = f(ax) and (af)(x) = f(xa) for all
a ∈ A, x ∈ X and f ∈ X∗, is a Banach A-bimodule. Similarly, the n-th dual
X(n) of X is a Banach A-bimodule. In particular, A(n) is a Banach A-bimodule.

The concept of weak amenability was first introduced by Bade, Curtis and
Dales in [1] for commutative Banach algebras. A commutative Banach algebra
A is called weakly amenable if every bounded derivation from A into every
symmetric Banach A-bimodule is zero. This is equivalent to the fact that
every bounded derivation from A into the dual Banach module A∗ is inner.
The latter was used by Johnson in [6] as a definition of weak amenability for
the non-commutative case. The concept of n-weak amenability was initiated by
Dales, Ghahramani and Grønbæk in [4], where they presented many important
properties of this sort of Banach algebra. A Banach algebra A is said to be
n-weakly amenable, for an integer n ≥ 0, if every bounded derivation from A
into A(n) is inner, where A(0) = A. Trivially, 1-weak amenability is nothing
than weak amenability.

Throughout the paper we assume that n is a non-negative integer, A and
B are Banach algebras and T : B → A is a continuous homomorphism with
‖T‖ ≤ 1. For brevity of notation we usually identify an element of A with its
canonical image in A(2n), as well as an element of A∗ with its image in A(2n+1).
One can simply identify the underlying space of (A×T B)(n) with the Banach
space A(n)×B(n) equipped with the norm ‖(f, g)‖ = ‖f‖+ ‖g‖ when n is even
and the norm ‖(f, g)‖ = max{‖f‖, ‖g‖} when n is odd. A direct verification
reveals that (A×T B)-module operations of (A×T B)(n) are as follows.

(f, g)(a, b) =

{ (
fa+ fT (b) + T (n)(g)a, gb

)
n is even(

fa+ fT (b), T (n)(fa) + gb
)

n is odd

(a, b)(f, g) =

{ (
af + T (b)f + aT (n)(g), bg

)
n is even(

af + T (b)f, T (n)(af) + bg
)

n is odd

for a ∈ A, b ∈ B, f ∈ A(n) and g ∈ B(n).
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3. (2n + 1)-weak amenability

In this section we clarify the relation between (2n+ 1)-weak amenability of
A ×T B and that of A and B. To do this we need the following result which
characterize the continuous derivations from A×T B into (A×T B)(2n+1).

Lemma 3.1. A mapping D : A ×T B → (A ×T B)(2n+1) is a continuous
derivation if and only if

D(a, b) = (DA(b) + TA(a), DB(b) + TB(a))

for all a ∈ A and b ∈ B, where

(a) DB : B → B(2n+1) and TA : A→ A(2n+1) are continuous derivations.
(b) DA : B → A(2n+1) is a bounded linear operator such that DA(b1b2) =

(TA◦T )(b1b2) for all b1, b2 ∈ B and DA(b)a = (TA◦T )(b)a and aDA(b) =
a(TA ◦ T )(b) for all a ∈ A and b ∈ B.

(c) TB : A → B(2n+1) is a bounded linear operator such that (T (2n+1) ◦
TA)(a1a2) = TB(a1a2) for all a1, a2 ∈ A and bTB(a) = b(T (2n+1) ◦TA)(a)
and TB(a)b = (T (2n+1) ◦ TA)(a)b for all a ∈ A and b ∈ B.

Moreover, D = d(f,g) for some f ∈ A(2n+1) and g ∈ B(2n+1) if and only if

DB = dg, TA = df , TB = T (2n+1) ◦ TA and DA = TA ◦ T .

Proof. A straightforward verification shows that D : A×T B → (A×T B)(2n+1)

is a bounded linear map if and only if there exist bounded linear mappings TA :
A → A(2n+1), DB : B → B(2n+1), TB : A → B(2n+1) and DA : B → A(2n+1)

such that D(a, b) = (DA(b) + TA(a), DB(b) + TB(a)) for all a ∈ A and b ∈ B.
Moreover, D is a derivation if and only if

D((a, b)(c, d)) = D(a, b)(c, d) + (a, b)D(c, d)

for all a, c ∈ A and b, d ∈ B. This is holds if and only if

TA(ac+ aT (d) + T (b)c) +DA(bd)

= TA(a)c+DA(b)c+ TA(a)T (d) +DA(b)T (d)

+ aTA(c) + aDA(d) + T (b)TA(c) + T (b)DA(d)

and

DB(bd) + TB(ac+ aT (d) + T (b)c)

= DB(b)d+ TB(a)d+ T (2n+1)(TA(a)c) + T (2n+1)(DA(b)c)

+ bDB(d) + bTB(c) + T (2n+1)(aTA(c)) + T (2n+1)(aDA(d))

for all a, c ∈ A and b, d ∈ B. By choosing suitable values of a, b, c and d, we
deduce that these equations hold if and only if TA and DB are derivations,
DA(bd) = DA(b)T (d) + T (b)DA(d), (TA ◦ T )(b)a = DA(b)a, a(TA ◦ T )(b) =
aDA(b), TB(ac) = (T (2n+1) ◦ TA)(ac), TB(T (b)c) = bTB(c) + T (2n+1)(DA(b)c)
and TB(aT (d)) = TB(a)d + T (2n+1)(aDA(d)) for all a, c ∈ A and b, d ∈ B.
By the appropriate using of [3, Lemma 3.4] and that TA is a derivation and
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T (B) ⊆ A, we conclude that the above statements hold if and only if conditions
(a)-(c) satisfied.

Now let D = d(f,g) for some f ∈ A(2n+1) and g ∈ B(2n+1). Let a ∈ A then

(TA(a), TB(a)) = d(f,g)(a, 0) = (af − fa, T (2n+1)(af − fa)).

Thus TA = df and TB = T (2n+1) ◦ TA. Similarly, DB = dg and DA = TA ◦ T .

Conversely, suppose that TA = df , DB = dg for some f ∈ A(2n+1) and g ∈
B(2n+1) and TB = T (2n+1)◦TA and DA = TA◦T . Then DA(b) = fT (b)−T (b)f
and TB(a) = T (2n+1)(af − fa) for all a ∈ A and b ∈ B. Therefore

D(a, b) = (TA(a) +DA(b), DB(b) + TB(a))

= (af − fa+ fT (b)− T (b)f, bg − gb+ T (2n+1)(af − fa))

= (a, b)(f, g)− (f, g)(a, b)

for all (a, b) ∈ A×T B. Consequently, D = d(f,g). �

For Banach algebra A and Banach A-bimodule X, the annihilator of A in
X is defined by

AnnX(A) = {x ∈ X : xa = 0 = ax for all a ∈ A}.

It is easy to see that AnnX(A) = {0} if and only if 〈AX ∪ XA〉, the linear
span of AX ∪XA, is dense in X. It is shown in [3, Proposition 3.5, part (7)]
that if A×T B is (2n+ 1)-weakly amenable, then both A and B are (2n+ 1)-
weakly amenable. It is also shown that, the converse holds if AnnA(2n+1)(A) and
AnnB(2n+1)(B) are trivial. In the next theorem, we characterize the (2n + 1)-
weak amenability of A ×T B in terms of A and B, which also shows that the
hypothesis of triviality of AnnA(2n+1)(A) and AnnB(2n+1)(B) in [3, Proposition
3.5] is superfluous.

Theorem 3.2. The Banach algebra A×T B is (2n+1)-weakly amenable if and
only if both A and B are (2n+ 1)-weakly amenable.

Proof. To prove the necessity, suppose that A×TB is (2n+1)-weakly amenable.
Let D : A → A(2n+1) be a continuous derivation. Define D : A ×T B →
(A ×T B)(2n+1) by D(a, b) = (D(T (b)) + D(a), T (2n+1)(D(a))). Then Lemma
3.1 implies that D is a continuous derivation, so it is inner. Therefore A
is (2n + 1)-weakly amenable. Now let D : B → B(2n+1) be a continuous
derivation. Then D : A×T B → (A×T B)(2n+1) defined by D(a, b) = (0, D(b))
is a continuous derivation and hence it is inner. Lemma 3.1 implies that D is
inner, as required.

To prove the sufficiency, suppose that A and B are (2n+1)-weakly amenable.
Let D : A×T B → (A×T B)(2n+1) be a continuous derivation. By Lemma 3.1,
D enjoys the presentation

D(a, b) = (DA(b) + TA(a), DB(b) + TB(a)); (a ∈ A, b ∈ B),
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in which, the component mappings DA, DB , TA and TB are satisfying the con-
ditions (a)-(c) Lemma 3.1. So, DB and TA are inner derivations. Since A and
B are (2n+ 1)-weakly amenable, it follows that A2 and B2 are dense in A and
B respectively, [4, Proposition 1.2]. From condition (b) and (c) Lemma 3.1, we
get DA = TA ◦T and TB = T (2n+1) ◦TA. It follows that, D is inner. Therefore,
A×T B is (2n+ 1)-weakly amenable, as claimed. �

4. (2n)-weak amenability

In this section we are concerned with the conditions for the (2n)-weak
amenability of A ×T B. The next result, which is devoted to the even case,
needs a similar argument used in Lemma 3.1.

Lemma 4.1. A mapping D : A×TB → (A×TB)(2n) is a continuous derivation
if and only if

D(a, b) = (DA(b) + TA(a), DB(b) + TB(a))

for all a ∈ A and b ∈ B, where

(a) DB : B → B(2n) is a continuous derivation.
(b) DA : B → A(2n) is a bounded linear operator such that DA(b1b2) =

T (b1)DA(b2) +DA(b1)T (b2) for all b1, b2 ∈ B.
(c) TB : A → B(2n) is a bounded linear operator such that TB(a1a2) = 0 for

all a1, a2 ∈ A and bTB(a) = TB(a)b = 0 for all a ∈ A and b ∈ B.
(d) TA : A → A(2n) is a bounded linear operator such that TA(T (b)a) =

T (2n)(DB(b))a+DA(b)a+ T (b)TA(a) and TA(aT (b)) = aT (2n)(DB(b)) +
aDA(b) +TA(a)T (b) for all a ∈ A and b ∈ B and TA(a1a2) = a1TA(a2) +
TA(a1)a2 + T (2n)(TB(a1))a2 + a1T

(2n)(TB(a2)) for a1, a2 ∈ A.
Moreover, D = d(f,g) for some f ∈ A(2n) and g ∈ B(2n) if and only if DB = dg,

TA = df DA = TA ◦ T − T (2n) ◦DB and TB = 0.

In the next, we gives general necessary and sufficient conditions for A×T B
to be (2n)-weakly amenable.

Theorem 4.2. The Banach algebra A ×T B is (2n)-weakly amenable if and
only if

(1) both A and B are (2n)-weakly amenable.
(2) If D : B → A(2n) is a bounded linear operator such that D(b1b2) = 0 for

all b1, b2 ∈ B and aD(b) = D(b)a = 0 for all a ∈ A and b ∈ B, then
D = 0.

(3) If S : A → B(2n) is a bounded linear operator such that S(a1a2) = 0 for
all a1, a2 ∈ A and S(a)b = bS(a) = 0 for all a ∈ A and b ∈ B, then
S = 0.

Proof. To prove the necessity, suppose that A×T B is (2n)-weakly amenable.
Let D : A → A(2n) be a continuous derivation. Then D : A ×T B → (A ×T
B)(2n) defined by D(a, b) = (D(T (b)) +D(a), 0) is a continuous derivation and
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hence it is inner. It follows from Lemma 4.1, that D is inner. Therefore, A
is (2n)-weakly amenable. To prove that B is also (2n)-weakly amenable, for a
continuous derivation D : B → B(2n), define D : A ×T B → (A ×T B)(2n) by
D(a, b) = (−T (2n)(D(b)), D(b)). Then D is a continuous derivation and hence
it is inner. So D is inner.

Let D : B → A(2n) be a bounded linear operator such that D(b1b2) = 0 for
all b1, b2 ∈ B and aD(b) = D(b)a = 0 for all a ∈ A and b ∈ B. By Lemma 4.1,
we conclude that D : A×T B → (A×T B)(2n) defined by D(a, b) = (D(b), 0) is
a continuous derivation and so it is inner. Thus D = 0. This proves (2).

To prove (3), we need a similar argument. Indeed, if S : A → B(2n) be a
bounded linear operator such that S(a1a2) = 0 for all a1, a2 ∈ A and S(a)b =
bS(a) = 0 for all a ∈ A and b ∈ B. Then Lemma 4.1 implies that D : A×T B →
(A×TB)(2n) given byD(a, b) = (−T (2n)(S(a)), S(a)), is a continuous derivation
and so it is inner. Hence, S = 0. This completes the proof of necessity.

For sufficiency, suppose that D : A ×T B → (A ×T B)(2n) is a continuous
derivation. By Lemma 4.1, D is in the form

D(a, b) = (DA(b) + TA(a), DB(b) + TB(a)); (a ∈ A, b ∈ B),

in which, the component mappings DA, DB , TA and TB satisfying the condi-
tions (a)-(d) Lemma 4.1. By condition (3), TB = 0. This implies that TA is
a continuous derivation. By conditions (1), DB and TA are inner derivation.
Thus there are f ∈ A2n) and g ∈ B(2n) such that TA = df and DB = dg. Now

define D : B → A(2n) by D = DA − TA ◦ T + T (2n) ◦DB . From condition (d)
Lemma 4.1, it follows that D satisfies in condition (2). So, D = 0. This shows
that DA = TA ◦ T − T (2n) ◦ DB . Therefore D is inner, by Lemma 4.1. This
proves that A×T B is (2n)-weakly amenable, as claimed. �

Proposition 4.3. Condition (2) of Theorem 4.2 holds if and only if 〈B2〉 is
dense in B or AnnA(2n)(A) = {0}.

Proof. Take a non-zero f ∈ A(2n) with af = fa = 0 for all a ∈ A, and let
g ∈ B∗ be such that g|B2 = 0. Then D : B → A(2n) defined by D(b) = g(b)f
satisfies in condition (2) of Theorem 4.2, so it is zero. Thus g = 0. This shows
that 〈B2〉 is dense in B, as required. �

Using a similar argument, one can obtain the following.

Proposition 4.4. Condition (3) of Theorem 4.2 holds if and only if 〈A2〉 is
dense in A or AnnB(2n)(B) = {0}.

In [3, Proposition 3.5, part (6)], it has been proved that if both A and
B are (2n)-weakly amenable and AnnB(2n)(B) = {0}, then A ×T B is (2n)-
weakly amenable. There appear to be some gaps in the proof presented in
[3]. In details, for a continuous derivation D : A ×T B → (A ×T B)(2n) with
D = (D1, D2), it has been shown that D1(0, b) = D1(T (b), 0)− T (2n)(D2(0, b))



WEAK AMENABILITY OF A×T B 1997

for all b ∈ B. By a careful look at their proof, we could only conclude that

D1(0, b)a =
(
D1(T (b), 0)− T (2n)(D2(0, b))

)
a and

aD1(0, b) = a
(
D1(T (b), 0)− T (2n)(D2(0, b))

)
for all a ∈ A and b ∈ B. Therefore, we believe that to achieve the equality
D1(0, b) = D1(T (b), 0)− T (2n)(D2(0, b)) for all b ∈ B, more assumptions, such
as AnnA(2n)(A) = {0}, are needed. If we combine Theorem 4.2 and Propositions
4.7 and 4.8, we have the following theorem which improves [3, Proposition 3.5,
part (6)] and also extends [7, Theorem 3.4].

Theorem 4.5. The Banach algebra A ×T B is (2n)-weakly amenable if and
only if

(1) both A and B are (2n)-weakly amenable.
(2) 〈B2〉 is dense in B or AnnA(2n)(A) = {0}.
(3) 〈A2〉 is dense in A or AnnB(2n)(B) = {0}.

We know from [4, Proposition 1.3] that if A is weakly amenable, then 〈A2〉
is dense in A. Thus as a consequence of Theorem 4.5, we have the next result.

Proposition 4.6. If A ×T B is (2n)-weakly amenable, then both A and B
are also (2n)-weakly amenable. The converse holds if any of the following
statements holds.

(i) 〈A2〉 is dense in A and 〈B2〉 is dense in B.
(ii) both A and B are weakly amenable.
(iii) 〈B2〉 is dense in B and AnnB(2n)(B) = {0}.
(iv) 〈A2〉 is dense in A and AnnA(2n)(A) = {0}.
(v) AnnB(2n)(B) = {0} and AnnA(2n)(A) = {0}.

Proposition 4.7. Let B be commutative and (2n)-weakly amenable. If T (B)
is dense in A, then condition (3) of Theorem 4.2 holds.

Proof. Let S : A→ B(2n) be a bounded linear operator such that S(a1a2) = 0
for all a1, a2 ∈ A and S(a)b = bS(a) = 0 for all a ∈ A and b ∈ B. Then S ◦T is
a continuous derivation from B into B(2n), so it is zero. Therefore, S(T (b)) = 0
for all b ∈ B. From density of T (B) in A follows that S = 0, as required. �

The next result shows that, under certain condition on T , condition (3) of
Theorem 4.2 follows from condition (2).

Proposition 4.8. If T (2n) is injective and T (B) is dense in A, then condition
(3) of Theorem 4.2 follows from condition (2).

Proof. Let S : A→ B(2n) be a bounded linear operator such that S(a1a2) = 0
for all a1, a2 ∈ A and S(a)b = bS(a) = 0 for all a ∈ A and b ∈ B. Then D =
T (2n) ◦ S ◦ T : B → A(2n) is a bounded linear operator such that D(b1b2) = 0
for all b1, b2 ∈ B and aD(b) = D(b)a = 0 for all a ∈ A and b ∈ B, so it is zero.
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Since T (2n) is injective, S(T (b)) = 0 for all b ∈ B. Now density of T (B) in A
implies that S = 0. �

As a consequence of Theorem 3.2 and Proposition 4.5, we have the following
result, which extends [7, Corollay 3.5] and [5, Proposition 3.11].

Theorem 4.9. Let A and B have a bounded left (resp. right) approximate
identity. Then A ×T B is n-weakly amenable if and only if both A and B are
n-weakly amenable.

As a consequence of Theorem 4.9, with A = C and a non-zero multiplicative
linear functional T : B → C, we have the next result.

Corollary 4.10. The Banach algebra C×T B is n-weakly amenable if and only
if B is n-weakly amenable.

Let A be unital and θ : B → C be a non-zero multiplicative linear functional.
Define Tθ(b) := θ(b)1. Then A ×Tθ B is the θ-Lau product A ×θ B, [9]. As a
consequence of Theorem 4.9, we have the next result which has already proved
in [7, Theorem 3.1].

Corollary 4.11. Let A be unital and θ be a non-zero multiplicative linear
functional on B. Then A ×θ B is n-weakly amenable if and only if A and B
are n-weakly amenable.

As another consequence of Theorem 4.9, we have the next result.

Corollary 4.12. Suppose that a ∈ A be an idempotent and Ta : C→ A given
by Ta(1) = a, then A×Ta C is n-weakly amenable if and only if A is n-weakly
amenable.
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