WEAK AMENABILITY OF THE LAU PRODUCT OF BANACH ALGEBRAS DEFINED BY A BANACH ALGEBRA MORPHISM

Mohammad Ramezanpour

Abstract

Let A and B be two Banach algebras and $T: B \rightarrow A$ be a bounded homomorphism, with $\|T\| \leq 1$. Recently, Dabhi, Jabbari and Haghnejad Azar (Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 9, 14611474) obtained some results about the n-weak amenability of $A \times_{T} B$. In the present paper, we address a gap in the proof of these results and extend and improve them by discussing general necessary and sufficient conditions for $A \times_{T} B$ to be n-weakly amenable, for an integer $n \geq 0$.

1. Introduction

Let A and B be Banach algebras and let $T: B \rightarrow A$ be a continuous homomorphism with $\|T\| \leq 1$. Then the Cartesian product space $A \times B$ equipped with the norm $\|(a, b)\|=\|a\|+\|b\|$ and the algebra multiplication

$$
(a, b)(c, d)=(a c+a T(d)+T(b) c, b d) \quad(a, c \in A, b, d \in B)
$$

is a Banach algebra which is called the morphism product of A and B and is denoted by $A \times_{T} B$. This type of product was first introduced by Bhatt and Dabhi in [2] for the case where A is commutative and was extended by Dabhi, Jabbari and Haghnejad Azar in [3] for the general case; see also [5]. When $T=0$, this multiplication is the usual coordinatewise product and so $A \times_{T} B$ is in fact the direct product $A \times B$. Furthermore, let A be unital with the identity element e and let $\theta: B \rightarrow \mathbb{C}$ be a non-zero multiplicative linear functional. Define $T_{\theta}: B \rightarrow A$ as $T_{\theta}(b)=\theta(b) e$ for each $b \in B$. Then the above product with respect to T_{θ} coincides with the product investigated by Lau in [8], for certain classes of Banach algebras and followed by Sangani Monfared in [9] for the general case. Some aspects of $A \times_{T} B$ are investigated by many authors in $[3,5,7,10]$.

In [3] Dabhi, Jabbari and Haghnejad Azar, for an integer $n \geq 0$, investigated the n-weak amenability properties of $A \times_{T} B$. As one of the main results, they
showed that the n-weak amenability of $A \times_{T} B$ always implies the n-weak amenability of both A and B, and were able to prove the converse, under a suitable conditions on A and B; [3, Proposition 3.5].

In the present paper, we address a gap in the proof of these results and extend and improve them by discussing general necessary and sufficient conditions for $A \times_{T} B$ to be n-weakly amenable for an integer $n \geq 0$.

2. Preliminaries

Let A be a Banach algebra, and X be a Banach A-bimodule. A derivation from A into X is a linear mapping $D: A \rightarrow X$ satisfying

$$
D(a b)=D(a) b+a D(b) \quad(a, b \in A)
$$

An instance of special importance is the inner derivations $d_{x}(a)=a x-x a$ defined for each $x \in X$. For a Banach A-bimodule X, the dual X^{*} of X equipped with the module actions $(f a)(x)=f(a x)$ and $(a f)(x)=f(x a)$ for all $a \in A, x \in X$ and $f \in X^{*}$, is a Banach A-bimodule. Similarly, the n-th dual $X^{(n)}$ of X is a Banach A-bimodule. In particular, $A^{(n)}$ is a Banach A-bimodule.

The concept of weak amenability was first introduced by Bade, Curtis and Dales in [1] for commutative Banach algebras. A commutative Banach algebra A is called weakly amenable if every bounded derivation from A into every symmetric Banach A-bimodule is zero. This is equivalent to the fact that every bounded derivation from A into the dual Banach module A^{*} is inner. The latter was used by Johnson in [6] as a definition of weak amenability for the non-commutative case. The concept of n-weak amenability was initiated by Dales, Ghahramani and Grønbæk in [4], where they presented many important properties of this sort of Banach algebra. A Banach algebra A is said to be n-weakly amenable, for an integer $n \geq 0$, if every bounded derivation from A into $A^{(n)}$ is inner, where $A^{(0)}=A$. Trivially, 1-weak amenability is nothing than weak amenability.

Throughout the paper we assume that n is a non-negative integer, A and B are Banach algebras and $T: B \rightarrow A$ is a continuous homomorphism with $\|T\| \leq 1$. For brevity of notation we usually identify an element of A with its canonical image in $A^{(2 n)}$, as well as an element of A^{*} with its image in $A^{(2 n+1)}$. One can simply identify the underlying space of $\left(A \times_{T} B\right)^{(n)}$ with the Banach space $A^{(n)} \times B^{(n)}$ equipped with the norm $\|(f, g)\|=\|f\|+\|g\|$ when n is even and the norm $\|(f, g)\|=\max \{\|f\|,\|g\|\}$ when n is odd. A direct verification reveals that $\left(A \times_{T} B\right)$-module operations of $\left(A \times_{T} B\right)^{(n)}$ are as follows.

$$
\begin{aligned}
& (f, g)(a, b)= \begin{cases}\left(f a+f T(b)+T^{(n)}(g) a, g b\right) & n \text { is even } \\
\left(f a+f T(b), T^{(n)}(f a)+g b\right) & n \text { is odd }\end{cases} \\
& (a, b)(f, g)= \begin{cases}\left(a f+T(b) f+a T^{(n)}(g), b g\right) & n \text { is even } \\
\left(a f+T(b) f, T^{(n)}(a f)+b g\right) & n \text { is odd }\end{cases}
\end{aligned}
$$

for $a \in A, b \in B, f \in A^{(n)}$ and $g \in B^{(n)}$.

3. $(2 n+1)$-weak amenability

In this section we clarify the relation between $(2 n+1)$-weak amenability of $A \times_{T} B$ and that of A and B. To do this we need the following result which characterize the continuous derivations from $A \times_{T} B$ into $\left(A \times_{T} B\right)^{(2 n+1)}$.

Lemma 3.1. A mapping $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n+1)}$ is a continuous derivation if and only if

$$
D(a, b)=\left(D_{A}(b)+T_{A}(a), D_{B}(b)+T_{B}(a)\right)
$$

for all $a \in A$ and $b \in B$, where
(a) $D_{B}: B \rightarrow B^{(2 n+1)}$ and $T_{A}: A \rightarrow A^{(2 n+1)}$ are continuous derivations.
(b) $D_{A}: B \rightarrow A^{(2 n+1)}$ is a bounded linear operator such that $D_{A}\left(b_{1} b_{2}\right)=$ $\left(T_{A} \circ T\right)\left(b_{1} b_{2}\right)$ for all $b_{1}, b_{2} \in B$ and $D_{A}(b) a=\left(T_{A} \circ T\right)(b) a$ and $a D_{A}(b)=$ $a\left(T_{A} \circ T\right)(b)$ for all $a \in A$ and $b \in B$.
(c) $T_{B}: A \rightarrow B^{(2 n+1)}$ is a bounded linear operator such that $\left(T^{(2 n+1)} \circ\right.$ $\left.T_{A}\right)\left(a_{1} a_{2}\right)=T_{B}\left(a_{1} a_{2}\right)$ for all $a_{1}, a_{2} \in A$ and $b T_{B}(a)=b\left(T^{(2 n+1)} \circ T_{A}\right)(a)$ and $T_{B}(a) b=\left(T^{(2 n+1)} \circ T_{A}\right)(a) b$ for all $a \in A$ and $b \in B$.
Moreover, $D=d_{(f, g)}$ for some $f \in A^{(2 n+1)}$ and $g \in B^{(2 n+1)}$ if and only if $D_{B}=d_{g}, T_{A}=d_{f}, T_{B}=T^{(2 n+1)} \circ T_{A}$ and $D_{A}=T_{A} \circ T$.
Proof. A straightforward verification shows that $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n+1)}$ is a bounded linear map if and only if there exist bounded linear mappings T_{A} : $A \rightarrow A^{(2 n+1)}, D_{B}: B \rightarrow B^{(2 n+1)}, T_{B}: A \rightarrow B^{(2 n+1)}$ and $D_{A}: B \rightarrow A^{(2 n+1)}$ such that $D(a, b)=\left(D_{A}(b)+T_{A}(a), D_{B}(b)+T_{B}(a)\right)$ for all $a \in A$ and $b \in B$. Moreover, D is a derivation if and only if

$$
D((a, b)(c, d))=D(a, b)(c, d)+(a, b) D(c, d)
$$

for all $a, c \in A$ and $b, d \in B$. This is holds if and only if

$$
\begin{aligned}
& T_{A}(a c+a T(d)+T(b) c)+D_{A}(b d) \\
= & T_{A}(a) c+D_{A}(b) c+T_{A}(a) T(d)+D_{A}(b) T(d) \\
& +a T_{A}(c)+a D_{A}(d)+T(b) T_{A}(c)+T(b) D_{A}(d)
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{B}(b d)+T_{B}(a c+a T(d)+T(b) c) \\
= & D_{B}(b) d+T_{B}(a) d+T^{(2 n+1)}\left(T_{A}(a) c\right)+T^{(2 n+1)}\left(D_{A}(b) c\right) \\
& +b D_{B}(d)+b T_{B}(c)+T^{(2 n+1)}\left(a T_{A}(c)\right)+T^{(2 n+1)}\left(a D_{A}(d)\right)
\end{aligned}
$$

for all $a, c \in A$ and $b, d \in B$. By choosing suitable values of a, b, c and d, we deduce that these equations hold if and only if T_{A} and D_{B} are derivations, $D_{A}(b d)=D_{A}(b) T(d)+T(b) D_{A}(d),\left(T_{A} \circ T\right)(b) a=D_{A}(b) a, a\left(T_{A} \circ T\right)(b)=$ $a D_{A}(b), T_{B}(a c)=\left(T^{(2 n+1)} \circ T_{A}\right)(a c), T_{B}(T(b) c)=b T_{B}(c)+T^{(2 n+1)}\left(D_{A}(b) c\right)$ and $T_{B}(a T(d))=T_{B}(a) d+T^{(2 n+1)}\left(a D_{A}(d)\right)$ for all $a, c \in A$ and $b, d \in B$. By the appropriate using of [3, Lemma 3.4] and that T_{A} is a derivation and
$T(B) \subseteq A$, we conclude that the above statements hold if and only if conditions (a)-(c) satisfied.

Now let $D=d_{(f, g)}$ for some $f \in A^{(2 n+1)}$ and $g \in B^{(2 n+1)}$. Let $a \in A$ then

$$
\left(T_{A}(a), T_{B}(a)\right)=d_{(f, g)}(a, 0)=\left(a f-f a, T^{(2 n+1)}(a f-f a)\right)
$$

Thus $T_{A}=d_{f}$ and $T_{B}=T^{(2 n+1)} \circ T_{A}$. Similarly, $D_{B}=d_{g}$ and $D_{A}=T_{A} \circ T$. Conversely, suppose that $T_{A}=d_{f}, D_{B}=d_{g}$ for some $f \in A^{(2 n+1)}$ and $g \in$ $B^{(2 n+1)}$ and $T_{B}=T^{(2 n+1)} \circ T_{A}$ and $D_{A}=T_{A} \circ T$. Then $D_{A}(b)=f T(b)-T(b) f$ and $T_{B}(a)=T^{(2 n+1)}(a f-f a)$ for all $a \in A$ and $b \in B$. Therefore

$$
\begin{aligned}
D(a, b) & =\left(T_{A}(a)+D_{A}(b), D_{B}(b)+T_{B}(a)\right) \\
& =\left(a f-f a+f T(b)-T(b) f, b g-g b+T^{(2 n+1)}(a f-f a)\right) \\
& =(a, b)(f, g)-(f, g)(a, b)
\end{aligned}
$$

for all $(a, b) \in A \times_{T} B$. Consequently, $D=d_{(f, g)}$.
For Banach algebra A and Banach A-bimodule X, the annihilator of A in X is defined by

$$
\operatorname{Ann}_{X}(A)=\{x \in X: x a=0=a x \text { for all } a \in A\} .
$$

It is easy to see that $\operatorname{Ann}_{X}(A)=\{0\}$ if and only if $\langle A X \cup X A\rangle$, the linear span of $A X \cup X A$, is dense in X. It is shown in [3, Proposition 3.5, part (7)] that if $A \times_{T} B$ is $(2 n+1)$-weakly amenable, then both A and B are $(2 n+1)$ weakly amenable. It is also shown that, the converse holds if $\mathrm{Ann}_{A^{(2 n+1)}}(A)$ and $\operatorname{Ann}_{B^{(2 n+1)}}(B)$ are trivial. In the next theorem, we characterize the $(2 n+1)$ weak amenability of $A \times_{T} B$ in terms of A and B, which also shows that the hypothesis of triviality of $\mathrm{Ann}_{A^{(2 n+1)}}(A)$ and $\mathrm{Ann}_{B^{(2 n+1)}}(B)$ in [3, Proposition $3.5]$ is superfluous.
Theorem 3.2. The Banach algebra $A \times_{T} B$ is $(2 n+1)$-weakly amenable if and only if both A and B are $(2 n+1)$-weakly amenable.

Proof. To prove the necessity, suppose that $A \times{ }_{T} B$ is ($2 n+1$)-weakly amenable. Let $D: A \rightarrow A^{(2 n+1)}$ be a continuous derivation. Define $\bar{D}: A \times_{T} B \rightarrow$ $\left(A \times_{T} B\right)^{(2 n+1)}$ by $\bar{D}(a, b)=\left(D(T(b))+D(a), T^{(2 n+1)}(D(a))\right)$. Then Lemma 3.1 implies that \bar{D} is a continuous derivation, so it is inner. Therefore A is $(2 n+1)$-weakly amenable. Now let $D: B \rightarrow B^{(2 n+1)}$ be a continuous derivation. Then $\bar{D}: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n+1)}$ defined by $\bar{D}(a, b)=(0, D(b))$ is a continuous derivation and hence it is inner. Lemma 3.1 implies that D is inner, as required.

To prove the sufficiency, suppose that A and B are ($2 n+1$)-weakly amenable. Let $\bar{D}: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n+1)}$ be a continuous derivation. By Lemma 3.1, \bar{D} enjoys the presentation

$$
\bar{D}(a, b)=\left(D_{A}(b)+T_{A}(a), D_{B}(b)+T_{B}(a)\right) ; \quad(a \in A, b \in B)
$$

in which, the component mappings D_{A}, D_{B}, T_{A} and T_{B} are satisfying the conditions (a)-(c) Lemma 3.1. So, D_{B} and T_{A} are inner derivations. Since A and B are $(2 n+1)$-weakly amenable, it follows that A^{2} and B^{2} are dense in A and B respectively, [4, Proposition 1.2]. From condition (b) and (c) Lemma 3.1, we get $D_{A}=T_{A} \circ T$ and $T_{B}=T^{(2 n+1)} \circ T_{A}$. It follows that, \bar{D} is inner. Therefore, $A \times_{T} B$ is $(2 n+1)$-weakly amenable, as claimed.

4. (2n)-weak amenability

In this section we are concerned with the conditions for the $(2 n)$-weak amenability of $A \times_{T} B$. The next result, which is devoted to the even case, needs a similar argument used in Lemma 3.1.

Lemma 4.1. A mapping $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n)}$ is a continuous derivation if and only if

$$
D(a, b)=\left(D_{A}(b)+T_{A}(a), D_{B}(b)+T_{B}(a)\right)
$$

for all $a \in A$ and $b \in B$, where
(a) $D_{B}: B \rightarrow B^{(2 n)}$ is a continuous derivation.
(b) $D_{A}: B \rightarrow A^{(2 n)}$ is a bounded linear operator such that $D_{A}\left(b_{1} b_{2}\right)=$ $T\left(b_{1}\right) D_{A}\left(b_{2}\right)+D_{A}\left(b_{1}\right) T\left(b_{2}\right)$ for all $b_{1}, b_{2} \in B$.
(c) $T_{B}: A \rightarrow B^{(2 n)}$ is a bounded linear operator such that $T_{B}\left(a_{1} a_{2}\right)=0$ for all $a_{1}, a_{2} \in A$ and $b T_{B}(a)=T_{B}(a) b=0$ for all $a \in A$ and $b \in B$.
(d) $T_{A}: A \rightarrow A^{(2 n)}$ is a bounded linear operator such that $T_{A}(T(b) a)=$ $T^{(2 n)}\left(D_{B}(b)\right) a+D_{A}(b) a+T(b) T_{A}(a)$ and $T_{A}(a T(b))=a T^{(2 n)}\left(D_{B}(b)\right)+$ $a D_{A}(b)+T_{A}(a) T(b)$ for all $a \in A$ and $b \in B$ and $T_{A}\left(a_{1} a_{2}\right)=a_{1} T_{A}\left(a_{2}\right)+$ $T_{A}\left(a_{1}\right) a_{2}+T^{(2 n)}\left(T_{B}\left(a_{1}\right)\right) a_{2}+a_{1} T^{(2 n)}\left(T_{B}\left(a_{2}\right)\right)$ for $a_{1}, a_{2} \in A$.
Moreover, $D=d_{(f, g)}$ for some $f \in A^{(2 n)}$ and $g \in B^{(2 n)}$ if and only if $D_{B}=d_{g}$, $T_{A}=d_{f} D_{A}=T_{A} \circ T-T^{(2 n)} \circ D_{B}$ and $T_{B}=0$.

In the next, we gives general necessary and sufficient conditions for $A \times_{T} B$ to be ($2 n$)-weakly amenable.

Theorem 4.2. The Banach algebra $A \times_{T} B$ is (2n)-weakly amenable if and only if
(1) both A and B are (2n)-weakly amenable.
(2) If $D: B \rightarrow A^{(2 n)}$ is a bounded linear operator such that $D\left(b_{1} b_{2}\right)=0$ for all $b_{1}, b_{2} \in B$ and $a D(b)=D(b) a=0$ for all $a \in A$ and $b \in B$, then $D=0$.
(3) If $S: A \rightarrow B^{(2 n)}$ is a bounded linear operator such that $S\left(a_{1} a_{2}\right)=0$ for all $a_{1}, a_{2} \in A$ and $S(a) b=b S(a)=0$ for all $a \in A$ and $b \in B$, then $S=0$.

Proof. To prove the necessity, suppose that $A \times_{T} B$ is ($2 n$)-weakly amenable.
Let $D: A \rightarrow A^{(2 n)}$ be a continuous derivation. Then $\bar{D}: A \times_{T} B \rightarrow\left(A \times_{T}\right.$ $B)^{(2 n)}$ defined by $\bar{D}(a, b)=(D(T(b))+D(a), 0)$ is a continuous derivation and
hence it is inner. It follows from Lemma 4.1, that D is inner. Therefore, A is $(2 n)$-weakly amenable. To prove that B is also $(2 n)$-weakly amenable, for a continuous derivation $D: B \rightarrow B^{(2 n)}$, define $\bar{D}: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n)}$ by $\bar{D}(a, b)=\left(-T^{(2 n)}(D(b)), D(b)\right)$. Then \bar{D} is a continuous derivation and hence it is inner. So D is inner.

Let $D: B \rightarrow A^{(2 n)}$ be a bounded linear operator such that $D\left(b_{1} b_{2}\right)=0$ for all $b_{1}, b_{2} \in B$ and $a D(b)=D(b) a=0$ for all $a \in A$ and $b \in B$. By Lemma 4.1, we conclude that $\bar{D}: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n)}$ defined by $\bar{D}(a, b)=(D(b), 0)$ is a continuous derivation and so it is inner. Thus $D=0$. This proves (2).

To prove (3), we need a similar argument. Indeed, if $S: A \rightarrow B^{(2 n)}$ be a bounded linear operator such that $S\left(a_{1} a_{2}\right)=0$ for all $a_{1}, a_{2} \in A$ and $S(a) b=$ $b S(a)=0$ for all $a \in A$ and $b \in B$. Then Lemma 4.1 implies that $\bar{D}: A \times_{T} B \rightarrow$ $\left(A \times_{T} B\right)^{(2 n)}$ given by $\bar{D}(a, b)=\left(-T^{(2 n)}(S(a)), S(a)\right)$, is a continuous derivation and so it is inner. Hence, $S=0$. This completes the proof of necessity.

For sufficiency, suppose that $\bar{D}: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n)}$ is a continuous derivation. By Lemma 4.1, \bar{D} is in the form

$$
\bar{D}(a, b)=\left(D_{A}(b)+T_{A}(a), D_{B}(b)+T_{B}(a)\right) ; \quad(a \in A, b \in B)
$$

in which, the component mappings D_{A}, D_{B}, T_{A} and T_{B} satisfying the conditions (a)-(d) Lemma 4.1. By condition (3), $T_{B}=0$. This implies that T_{A} is a continuous derivation. By conditions (1), D_{B} and T_{A} are inner derivation. Thus there are $f \in A^{2 n)}$ and $g \in B^{(2 n)}$ such that $T_{A}=d_{f}$ and $D_{B}=d_{g}$. Now define $D: B \rightarrow A^{(2 n)}$ by $D=D_{A}-T_{A} \circ T+T^{(2 n)} \circ D_{B}$. From condition (d) Lemma 4.1, it follows that D satisfies in condition (2). So, $D=0$. This shows that $D_{A}=T_{A} \circ T-T^{(2 n)} \circ D_{B}$. Therefore \bar{D} is inner, by Lemma 4.1. This proves that $A \times_{T} B$ is (2n)-weakly amenable, as claimed.

Proposition 4.3. Condition (2) of Theorem 4.2 holds if and only if $\left\langle B^{2}\right\rangle$ is dense in B or $\operatorname{Ann}_{A^{(2 n)}}(A)=\{0\}$.

Proof. Take a non-zero $f \in A^{(2 n)}$ with $a f=f a=0$ for all $a \in A$, and let $g \in B^{*}$ be such that $\left.g\right|_{B^{2}}=0$. Then $D: B \rightarrow A^{(2 n)}$ defined by $D(b)=g(b) f$ satisfies in condition (2) of Theorem 4.2, so it is zero. Thus $g=0$. This shows that $\left\langle B^{2}\right\rangle$ is dense in B, as required.

Using a similar argument, one can obtain the following.
Proposition 4.4. Condition (3) of Theorem 4.2 holds if and only if $\left\langle A^{2}\right\rangle$ is dense in A or $\mathrm{Ann}_{B^{(2 n)}}(B)=\{0\}$.

In [3, Proposition 3.5, part (6)], it has been proved that if both A and B are $(2 n)$-weakly amenable and $\operatorname{Ann}_{B^{(2 n)}}(B)=\{0\}$, then $A \times_{T} B$ is $(2 n)$ weakly amenable. There appear to be some gaps in the proof presented in [3]. In details, for a continuous derivation $D: A \times_{T} B \rightarrow\left(A \times_{T} B\right)^{(2 n)}$ with $D=\left(D_{1}, D_{2}\right)$, it has been shown that $D_{1}(0, b)=D_{1}(T(b), 0)-T^{(2 n)}\left(D_{2}(0, b)\right)$
for all $b \in B$. By a careful look at their proof, we could only conclude that

$$
\begin{aligned}
& D_{1}(0, b) a=\left(D_{1}(T(b), 0)-T^{(2 n)}\left(D_{2}(0, b)\right)\right) a \quad \text { and } \\
& a D_{1}(0, b)=a\left(D_{1}(T(b), 0)-T^{(2 n)}\left(D_{2}(0, b)\right)\right)
\end{aligned}
$$

for all $a \in A$ and $b \in B$. Therefore, we believe that to achieve the equality $D_{1}(0, b)=D_{1}(T(b), 0)-T^{(2 n)}\left(D_{2}(0, b)\right)$ for all $b \in B$, more assumptions, such as $\operatorname{Ann}_{A^{(2 n)}}(A)=\{0\}$, are needed. If we combine Theorem 4.2 and Propositions 4.7 and 4.8 , we have the following theorem which improves [3, Proposition 3.5, part (6)] and also extends [7, Theorem 3.4].
Theorem 4.5. The Banach algebra $A \times_{T} B$ is (2n)-weakly amenable if and only if
(1) both A and B are (2n)-weakly amenable.
(2) $\left\langle B^{2}\right\rangle$ is dense in B or $\operatorname{Ann}_{A^{(2 n)}}(A)=\{0\}$.
(3) $\left\langle A^{2}\right\rangle$ is dense in A or $\operatorname{Ann}_{B^{(2 n)}}(B)=\{0\}$.

We know from [4, Proposition 1.3] that if A is weakly amenable, then $\left\langle A^{2}\right\rangle$ is dense in A. Thus as a consequence of Theorem 4.5, we have the next result.
Proposition 4.6. If $A \times_{T} B$ is (2n)-weakly amenable, then both A and B are also (2n)-weakly amenable. The converse holds if any of the following statements holds.
(i) $\left\langle A^{2}\right\rangle$ is dense in A and $\left\langle B^{2}\right\rangle$ is dense in B.
(ii) both A and B are weakly amenable.
(iii) $\left\langle B^{2}\right\rangle$ is dense in B and $\operatorname{Ann}_{B^{(2 n)}}(B)=\{0\}$.
(iv) $\left\langle A^{2}\right\rangle$ is dense in A and $\operatorname{Ann}_{A^{(2 n)}}(A)=\{0\}$.
(v) $\operatorname{Ann}_{B^{(2 n)}}(B)=\{0\}$ and $\operatorname{Ann}_{A^{(2 n)}}(A)=\{0\}$.

Proposition 4.7. Let B be commutative and (2n)-weakly amenable. If $T(B)$ is dense in A, then condition (3) of Theorem 4.2 holds.
Proof. Let $S: A \rightarrow B^{(2 n)}$ be a bounded linear operator such that $S\left(a_{1} a_{2}\right)=0$ for all $a_{1}, a_{2} \in A$ and $S(a) b=b S(a)=0$ for all $a \in A$ and $b \in B$. Then $S \circ T$ is a continuous derivation from B into $B^{(2 n)}$, so it is zero. Therefore, $S(T(b))=0$ for all $b \in B$. From density of $T(B)$ in A follows that $S=0$, as required.

The next result shows that, under certain condition on T, condition (3) of Theorem 4.2 follows from condition (2).
Proposition 4.8. If $T^{(2 n)}$ is injective and $T(B)$ is dense in A, then condition (3) of Theorem 4.2 follows from condition (2).

Proof. Let $S: A \rightarrow B^{(2 n)}$ be a bounded linear operator such that $S\left(a_{1} a_{2}\right)=0$ for all $a_{1}, a_{2} \in A$ and $S(a) b=b S(a)=0$ for all $a \in A$ and $b \in B$. Then $D=$ $T^{(2 n)} \circ S \circ T: B \rightarrow A^{(2 n)}$ is a bounded linear operator such that $D\left(b_{1} b_{2}\right)=0$ for all $b_{1}, b_{2} \in B$ and $a D(b)=D(b) a=0$ for all $a \in A$ and $b \in B$, so it is zero.

Since $T^{(2 n)}$ is injective, $S(T(b))=0$ for all $b \in B$. Now density of $T(B)$ in A implies that $S=0$.

As a consequence of Theorem 3.2 and Proposition 4.5, we have the following result, which extends [7, Corollay 3.5] and [5, Proposition 3.11].

Theorem 4.9. Let A and B have a bounded left (resp. right) approximate identity. Then $A \times_{T} B$ is n-weakly amenable if and only if both A and B are n-weakly amenable.

As a consequence of Theorem 4.9, with $A=\mathbb{C}$ and a non-zero multiplicative linear functional $T: B \rightarrow \mathbb{C}$, we have the next result.

Corollary 4.10. The Banach algebra $\mathbb{C} \times_{T} B$ is n-weakly amenable if and only if B is n-weakly amenable.

Let A be unital and $\theta: B \rightarrow \mathbb{C}$ be a non-zero multiplicative linear functional. Define $T_{\theta}(b):=\theta(b) 1$. Then $A \times_{T_{\theta}} B$ is the θ-Lau product $A \times_{\theta} B$, [9]. As a consequence of Theorem 4.9, we have the next result which has already proved in [7, Theorem 3.1].
Corollary 4.11. Let A be unital and θ be a non-zero multiplicative linear functional on B. Then $A \times_{\theta} B$ is n-weakly amenable if and only if A and B are n-weakly amenable.

As another consequence of Theorem 4.9, we have the next result.
Corollary 4.12. Suppose that $a \in A$ be an idempotent and $T_{a}: \mathbb{C} \rightarrow A$ given by $T_{a}(1)=a$, then $A \times_{T_{a}} \mathbb{C}$ is n-weakly amenable if and only if A is n-weakly amenable.

Acknowledgments. The author would like to thanks the referee for his/her useful comments and suggestions.

References

[1] G. W. Bade, P. C. Curtis, and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), no. 2, 359-377.
[2] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87 (2013), no. 2, 195-206.
[3] P. A. Dabhi, A. Jabbari, and K. Haghnejad Azar, Some notes on amenability and weak amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 9, 1461-1474.
[4] H. G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), no. 1, 19-54.
[5] H. Javanshiri and M. Nemati, On a certain product of Banach algebras and some of its properties, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. sci. 15 (2014), no. 3, 219-227.
[6] B. E. Johnson, Derivations from $L^{1}(G)$ into $L^{1}(G)$ and $L^{\infty}(G)$, Harmonic analysis (Luxembourg, 1987), 191198, Lecture Notes in Math., 1359, Springer, Berlin, 1988.
[7] A. R. Khoddami, n-weak amenability of T-Lau product of Banach algebras, Chamchuri J. Math. 5 (2013), 57-65
[8] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), no. 3, 161-175.
[9] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), no. 3, 277-294.
[10] M. Nemati and H. Javanshiri, Some homological and cohomological notions on T-Lau product of Banach algebras, Banach J. Math. Anal. 9 (2015), no. 2, 183-195.

Mohammad Ramezanpour
School of Mathematics and Computer Science
Damghan University
P. O. Box 36716 , Damghan 41167 , Iran

E-mail address: ramezanpour@du.ac.ir, md_ramezanpour@yahoo.com

