References
- Meira, G. R., Andrade, M. C., Padaratz, I. J., Alonso, M. C., & Borba, J. C. (2006). Measurements and modelling of marine salt transportation and deposition in a tropical region in Brazil. Atmospheric Environment, 40(29), 5596-5607. https://doi.org/10.1016/j.atmosenv.2006.04.053
- Akiyama, M., Frangopol, D. M., & Suzuki, M. (2012). Integration of the effects of airborne chlorides into reliability-based durability design of reinforced concrete structures in a marine environment. Structure and Infrastructure Engineering, 8(2), 125-134. https://doi.org/10.1080/15732470903363313
- Akiyama, M., Frangopol, D. M., & Matsuzaki, H. (2011). Life‐cycle reliability of RC bridge piers under seismic and airborne chloride hazards. Earthquake Engineering & Structural Dynamics, 40(15), 1671-1687. https://doi.org/10.1002/eqe.1108
- Morcillo, M., Chico, B., Mariaca, L., & Otero, E. (2000). Salinity in marine atmospheric corrosion: its dependence on the wind regime existing in the site. Corrosion Science, 42(1), 91-104. https://doi.org/10.1016/S0010-938X(99)00048-7
- Lee, J. S., & Moon, H. Y. (2006). Salinity distribution of seashore concrete structures in Korea. Building and environment, 41(10), 1447-1453. https://doi.org/10.1016/j.buildenv.2005.05.030
- Meira, G. R., Andrade, C., Alonso, C., Padaratz, I. J., & Borba, J. C. (2007). Salinity of marine aerosols in a Brazilian coastal area—Influence of wind regime. Atmospheric Environment, 41(38), 8431-8441. https://doi.org/10.1016/j.atmosenv.2007.07.004
- Hossain, K. M. A., Easa, S. M., & Lachemi, M. (2009). Evaluation of the effect of marine salts on urban built infrastructure. Building and Environment, 44(4), 713-722. https://doi.org/10.1016/j.buildenv.2008.06.004
- Murakami, S., Mochida, A., & Kato, S. (2003). Flow of development and review of LAWEPS(Local wind forecasting system). Japan Fluid Mechanics Society, 22(203), 375-386.
- Tomiita, T., Kashino, N., & Takane, M. (1988). Effect of weather factors for collecting airborne chloride. Journal of Architectural Institute of Japan, 384, 34-41.
- Nakazawa, E., Tsukayama, S., Kitamura, K., Yoshihisa, M., Wada, M., & Itokazu, Y. (1998). Study on airborne chloride amount and salt concentration during rainfall. Journal of Coastal Engineering, 45, 1176-1180. https://doi.org/10.2208/proce1989.45.1176
- Sato, K., Sasahara, R., & Shiono, K. (2003). Relationship between the airborne chloride amount and the wind speed at drift sedimentation areas(corrosion and corrosion prevention). Annual Report of Concrete Engineering, 25(1), 851-856.
- Iwasaki, E., Kojima, Y., Takatsu, S., & Nagai, M. (2010). Relationship between the installation direction of salt collector and the airborne chloride. Journal of Structural Engineering, 56, 616-629.
- Oya, M., Takebe, M., Hirose, N., Matsuura, H., & Imai, Atsumi. (2013). Prediction of airborne chloride by wind direction and speed data. Zairyo-to-Kankyo, 62(11), 430-433. https://doi.org/10.3323/jcorr.62.430
- Cho, G., Yeo, I., & Park, D. (2016). An Eight-directional Airborne Chloride Collection Method for the Application of an Appropriate Anti-corrosive Material for Each Side of a Building. ARCHITECTURAL RESEARCH, 18(2), 75-82. https://doi.org/10.5659/AIKAR.2016.18.2.75