Acknowledgement
Supported by : 한국에너지기술평가원(KETEP)
References
- Ahn, K. U., Kim, D. W., Kim, Y. J., Park, C. S., & Kim, I. H. (2015). Gaussian Process Model for Control of an Existing Building. Energy Procedia, 78, 2136-2141. https://doi.org/10.1016/j.egypro.2015.11.295
- Ahn, K. U., Kim, D. W., Kim, Y. J., Yoon, S. H., & Park, C. S. (2016). Issues to Be Solved for Energy Simulation of An Existing Office Building. Sustainability, 8(4), 345. https://doi.org/10.3390/su8040345
- Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705
- Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Braun, J. E. (2007). A Near-Optimal Control Strategy for Cool Storage Systems with Dynamic Electric Rates. HVAC&R Research, 13(4), 557-580. https://doi.org/10.1080/10789669.2007.10390972
- Chen, H. J., Wang, D. W. P., & Chen, S. L. (2005). Optimization of an ice-storage air conditioning system using dynamic programming method. Applied Thermal Engineering, 25(2), 461-472. https://doi.org/10.1016/j.applthermaleng.2003.12.006
- D'Oca, S., & Hong, T. (2015). Occupancy schedules learning process through a data mining framework. Energy and Buildings, 88, 395-408. https://doi.org/10.1016/j.enbuild.2014.11.065
- Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in neural information processing systems, 9, 155-161.
- Eames, I. W., & Adref, K. T. (2002). Freezing and melting of water in spherical enclosures of the type used in thermal (ice) storage systems. Applied thermal engineering, 22(7), 733-745. https://doi.org/10.1016/S1359-4311(02)00026-1
- Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning, Proceedings of the International Conference on Neural Networks, 1930-1935.
- Hajiah, A., & Krarti, M. (2012). Optimal control of building storage systems using both ice storage and thermal mass - Part I: Simulation environment. Energy Conversion and Management, 64, 499-508. https://doi.org/10.1016/j.enconman.2012.02.016
- Henze, G. P., Dodier, R. H., & Krarti, M. (1997). Development of a predictive optimal controller for thermal energy storage systems. HVAC&R Research, 3(3), 233-264. https://doi.org/10.1080/10789669.1997.10391376
- Henze, G. P., Krarti, M., & Brandemuehl, M. J. (2003). Guidelines for improved performance of ice storage systems. Energy and Buildings, 35(2), 111-127. https://doi.org/10.1016/S0378-7788(01)00140-2
- Henze, G. P., & Schoenmann, J. (2003). Evaluation of reinforcement learning control for thermal energy storage systems. HVAC&R Research, 9(3), 259-275. https://doi.org/10.1080/10789669.2003.10391069
- Kim, Y. J. (2016). Comparative study of surrogate models for uncertainty quantification of building energy model: Gaussian Process Emulator vs. Polynomial Chaos Expansion. Energy and Buildings, 133, 46-58. https://doi.org/10.1016/j.enbuild.2016.09.032
- Kim, Y. J., & Park, C. S. (2014). Nonlinear Predictive Control of Chiller System using Gaussian Process Model. Paper presented at the Proceedings of the 2nd Asia Conference of International Building Performance Simulation Association, Nagoya, Japan.
- Kim, Y. J., & Park, C. S. (2016). Stepwise deterministic and stochastic calibration of an energy simulation model for an existing building. Energy and Buildings, 133, 455-468. https://doi.org/10.1016/j.enbuild.2016.10.009
- KMA, Korea Meteorological Administration. (2017). Dong-Nae Forecast (Digital Forecast), Retrieved from http://www.kma.go.kr/weather/forecast/timeseries.jsp
- Lee, K. H., Choi, B. Y., Joo, Y. J., Lee, S. R., & Han, S. H. (2000). Optimal Scheduling of Ice Storage System with Prediction of Cooling Loads. Korean Journal of Air-Conditioning and Refrigeration Engineering, 12(11), 982-994.
- Louppe, G. (2014). Understanding random forests: From theory to practice, Doctoral dissertation, University of Liege, Liege, Belgium.
- MacKay, D. J. C. (1992). Bayesian interpolation. Neural computation, 4(3), 415-447. https://doi.org/10.1162/neco.1992.4.3.415
- Ra, S. J., Shin, H. S., Suh, W. J., Chu, H. G., & Park, C. S. (2017). Five machine learning models for HVAC system in an existing office building. Journal of the Architectural Institute of Korea Structure & Construction (under review).
- Ramsey, F., & Schafer, D. (2012). The Statistical Sleuth: A Course in Methods of Data Analysis. Boston, MA: Cengage Learning.
- Shin, H. S., & Park, C. S. (2017). Development of a Machine Learning Model for a Chiller using Random Forest Algorithm and Data Pre-processing. Journal of the Architectural Institute of Korea Structure & Construction, (accepted).
- Suh, W. J., & Park, C. S. (2012). Issues and Limitations on the Use of a Whole Building Simulation Tool for Energy Diagnosis of a Real-life Building. Journal of the Architectural Institute of Korea Planning & Design, 28(1), 273-283. https://doi.org/10.5659/JAIK_PD.2012.28.1.273
- Suh, W. J., & Park, C. S. (2016). Room air Temperature Prediction Model using Genetic Programming and BEMS Data. Journal of the Architectural Institute of Korea Planning & Design, 32(6), 105-112. https://doi.org/10.5659/JAIK_PD.2016.32.6.105
- Sun, K., Yan, D., Hong, T., & Guo, S. (2014). Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration. Building and Environment, 79, 1-12.
- Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural processing letters, 9(3), 293-300. https://doi.org/10.1023/A:1018628609742
- Thiem, S., Born, A., Danov, V., Vandersickel, A., Schäfer, J., & Hamacher, T. (2017). Automated identification of a complex storage model and hardware implementation of a model-predictive controller for a cooling system with ice storage. Applied Thermal Engineering, 121, 922-940. https://doi.org/10.1016/j.applthermaleng.2017.04.149
- Vetterli, J. & Benz, M. (2012). Cost-optimal design of an ice-storage cooling system using mixed-integer linear programming techniques under various electricity tariff schemes. Energy and Buildings, 49, 226-234. https://doi.org/10.1016/j.enbuild.2012.02.012
- Wang, H., & Hu, D. (2005). Comparison of SVM and LS-SVM for regression, Proceedings of the International Conference on Neural Networks and Brain, 1, 279-283.
- Winkler, S., Efendic, H., Del Re, L., Affenzeller, M., & Wagner, S. (2007). Online modelling based on Genetic Programming. International journal of intelligent systems technologies and applications, 2(2-3), 255-270. https://doi.org/10.1504/IJISTA.2007.012487
- Yang, Z., & Becerik-Gerber, B. (2014). The coupled effects of personalized occupancy profile based HVAC schedules and room reassignment on building energy use. Energy and Buildings, 78, 113-122. https://doi.org/10.1016/j.enbuild.2014.04.002
- Yu, Z., Huang, G., Haghighat, F., Li, H., & Zhang, G. (2015). Control strategies for integration of thermal energy storage into buildings: State-of-the-art review. Energy and Buildings, 106, 203-215. https://doi.org/10.1016/j.enbuild.2015.05.038