DOI QR코드

DOI QR Code

A stochastic flood analysis using weather forecasts and a simple catchment dynamics

기상예보와 단순 강우-유출 모형을 이용한 확률적 홍수해석

  • Kim, Daehaa (Climate Application Department, APEC Climate Center) ;
  • Jang, Sangmin (Climate Application Department, APEC Climate Center)
  • 김대하 (APEC 기후센터, 응용사업본부) ;
  • 장상민 (APEC 기후센터, 응용사업본부)
  • Received : 2017.09.07
  • Accepted : 2017.09.19
  • Published : 2017.11.30

Abstract

With growing concerns about ever-increasing anthropogenic greenhouse gas emissions, it is crucial to enhance preparedness for unprecedented extreme weathers that can bring catastrophic consequences. In this study, we proposed a stochastic framework that considers uncertainty in weather forecasts for flood analyses. First, we calibrated a simple rainfall-runoff model against observed hourly hydrographs. Then, using probability density functions of rainfall depths conditioned by 6-hourly weather forecasts, we generated many stochastic rainfall depths for upcoming 48 hours. We disaggregated the stochastic 6-hour rainfalls into an hourly scale, and input them into the runoff model to quantify a probabilistic range of runoff during upcoming 48 hours. Under this framework, we assessed two rainfall events occurred in Bocheong River Basin, South Korea in 2017. It is indicated actual flood events could be greater than expectations from weather forecasts in some cases; however, the probabilistic runoff range could be intuitive information for managing flood risks before events. This study suggests combining deterministic and stochastic methods for forecast-based flood analyses to consider uncertainty in weather forecasts.

기후변화에 대한 우려와 함께 증가하고 있는 극한호우의 피해를 줄이기 위해서는 호우사상 발생 이전에 홍수위험을 미리 파악하여 피해를 대비할 시간을 늘리는 것이 중요하다. 본 연구에서는 기상청 동네예보를 기반으로 하는 간단한 확률적 홍수위험 산정방법을 제시하였다. 예보강수를 조건부로 하는 6시간 강수량의 확률밀도함수를 이용해 다수의 임의 강수량을 생성한 후 추계학적 모형으로 1시간 단위로 분해하여 간단한 강우-유출모형에 입력하는 방법을 사용하였다. 보청천 유역의 2017년 주요 강우사상에 제안된 방법을 적용한 결과, 7월 4일 최대홍수량이 나타났던 사상에 대해서는 예보강수를 이용한 모의는 홍수위험을 과소평가하였음을 확인하였고 반면 8월 15일 사상에 대한 동네예보는 강수량을 다소 과대추정 하였지만 홍수위험을 충분히 알릴 수 있는 정보로 평가되었다. 본 연구는 확정론적 모형과 확률론적 강수량을 결합하여 기상예보의 불확실성을 고려한 자료기반 홍수위험도 산정방법을 제시한다.

Keywords

References

  1. Adamovic, M., Braud, I., Branger, F., and Kirchner, J. W. (2015). "Assessing the simple dynamical systems approach in a Mediterranean context: application to the Ardeche catchment (France)." Hydrology and Earth System Sciences, Vol. 19, No. 5, pp. 2427-2449. https://doi.org/10.5194/hess-19-2427-2015
  2. Bae, D.-H., Jeong, C.-S., and Kwon, W.-T. (2004). "Effectiveness of high resolution GCM simulation for Korean water resources managements." Asia-Pacific Journal of Atmospheric Sciences, Vol. 40, No. 4, pp. 409-418.
  3. Brown, C., Ghile, Y., Laverty, M., and Li, K. (2012). "Decision scaling: linking bottom-up vulnerability analysis with climate projections in the water sector." Water Resources Research, Vol. 48, No. 9, W09537, doi: 10.1029/2011WR011212.
  4. Choi, Y. (2002). "Changes on frequency and magnitude of heavy rainfall events in South Korea." Journal of the Korean Data Analysis Society, Vol. 4, No. 3, pp. 269-282.
  5. Clark, R. A., Gourley, J. J., Flamig, Z. L., Hong, Y., and Clark, E. (2014). "CONUS-Wide evaluation of national weather service flash flood guidance products." Weather and Forecasting, Vol. 29, No. 2, pp. 377-392. https://doi.org/10.1175/WAF-D-12-00124.1
  6. Dingman, L. S. (2015). Physical hydrology. Chapter 1, Waveland Press, Inc. IL. ISBN 1-4786-1118-9.
  7. Han, M. S., Kim, C. S., Kim, H. S., and Kim, H. (2009). "A study on the revised methods of missing rainfall data for real-time forecasting system." Journal of Korea Water Resources Association, Vol. 42, No. 2, pp. 131-139. https://doi.org/10.3741/JKWRA.2009.42.2.131
  8. IPCC (2014). Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  9. Jung, I. W., Bae, D. H., and Kim, G. (2011). "Recent trends of mean and extreme precipitation in Korea." International Journal of Climatology, Vol. 31, No. 3, pp. 359-370. https://doi.org/10.1002/joc.2068
  10. Kang, B., and Moon, S. (2010). "Realtime streamflow prediction using quantitative precipitation model output." Journal of Korean Socieity of Civil Engineers, Vol. 30, No. 6, pp. 579-587.
  11. Kang, B., Rieu, S.-Y., and Ko, I.-H. (2007) "Long-term probabilistic streamflow prediction using weather outlook weighted ensemble streamflow prediction." Journal of Korean Society of Civil Engineers, Vol. 27, No. 2B, pp. 183-191.
  12. Kim, D., Yoon, S.-K., Kang, M. S., and Lee, K.-D., (2016). "Applicability of a multiplicative random cascade model for disaggregation of forecasted rainfalls." Journal of the Korean Society of Agricultural Engineers, Vol. 58, No. 5, pp. 89-97.
  13. Kim, J. H., Yoon, W. J., and Bae, D. H. (2005) "Real-time application of streamflow forecast using precipitation forecast." Journal of Korea Water Resources Association, Vol. 38, No. 1, pp. 11-23. https://doi.org/10.3741/JKWRA.2005.38.1.011
  14. Kirchner, J. W. (2009), "Catchments as simple dynamical systems: catchment characterization, rainfall-runoff modeling, and doing hydrology backward." Water Resources Research, Vol. 45, No. 2, W02429, doi: 10.1029/2008WR006912.
  15. Lee, M. H., Jung, I. W., and Bae, D. H. (2011). "Korean flood vulnerability assessment on climate change." Journal of Korea Water Resources Association, Vol. 44, No. 8, pp. 653-666. https://doi.org/10.3741/JKWRA.2011.44.8.653
  16. Lorenz, E. N. (1963). "Deterministic nonperiodic flow." Journal of Atmospheric Sciences, Vol. 42, No. 2, pp. 433-471.
  17. Melsen, L. A., Teuling, A. J., van Berkum, S. W., Torfs, P. J. J. F., and Uijlenhoet, R. (2014). "Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification." Water Resources Research, Vol. 50, No. 7, pp. 5577-5596, doi: 10.1002/2013WR014720.
  18. Muller, H., and Haberlandt, U. (2015). "Temporal rainfall disaggregation with a cascade model: from single-station disaggregation to spatial rainfall." Journal of Hydrologic Engineering, Vol. 20, No. 11, 04015026. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001195
  19. Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. doi: 10.1016/0022-1694(70)90255-6.
  20. Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Anctil, F., and Loumagne, C. (2005). "Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling." Journal of Hydrology, Vol. 303, No. 1-4, pp. 290-306. https://doi.org/10.1016/j.jhydrol.2004.08.026
  21. Teuling, A. J., Lehner, I., Kirchner, J. W., and Seneviratne, S. I. (2010). "Catchments as simple dynamical systems: experience from a Swiss prealpine catchment." Water Resources Research, Vol. 46, No. 10, W10502, doi: 10.1029/2009WR008777.
  22. White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J. T., Lazo, J. K., Kumar, A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray, V., Bharwani, S., MacLeod, D., James, R., Fleming, L., Morse, A. P., Eggen, B., Graham, R., Kjellstrom, E., Becker, E., Pegion, K. V., Holbrook, N. J., McEvoy, D., Depledge, M., Perkins-Kirkpatrick, S., Brown, T. J., Street, R., Jones, L., Remenyi, T. A., Hodgson-Johnston, I., Buontempo, C., Lamb, R., Meinke, H., Arheimer, B., and Zebiak, S. E. (2017). "Potential applications of subseasonal-to-seasonal (S2S) predictions." Meteorological Applications, Vol. 24, No. 3, pp. 315-325. https://doi.org/10.1002/met.1654