References
- Bak, P. (1996). How nature works. Copernicus/Springer-Verlag, New York.
- Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). "Power-law distributions in empirical data." Siam Review, Vol. 51, No 4, pp. 661-703. https://doi.org/10.1137/070710111
- De Vries, H., Becker, T., and Eckhardt, B. (1994). "Power law distribution of discharge in ideal networks." Water Resources Research, Vol. 30, No. 12, pp. 3541-3543. https://doi.org/10.1029/94WR02178
- Flint, J. J. (1974). "Stream gradient as a function of order, magnitude, and discharge." Water Resources Research, Vol. 10, No. 5, 969-973. https://doi.org/10.1029/WR010i005p00969
- Horton, R. E. (1945). "Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology." Geological Society of America Bulletin, Vol. 56, No. 3, 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
- Khan, U., Tuteja, N. K., and Sharma, A. (2013). "Delineating hydrologic response units in large upland catchments and its evaluation using soil moisture simulations." Environmental Modelling & Software, Vol. 46, pp. 142-154. https://doi.org/10.1016/j.envsoft.2013.03.005
- Kim, J. C., Kang, H., and Jung, K. (2016). "Analysis of drainage structure for river basin on the basis of power law distribution." Journal of Korea Water Resources Association, Vol. 49, No. 6, pp. 495-507. https://doi.org/10.3741/JKWRA.2016.49.6.495
- La Barbera, P., and Roth, G. (1994). "Invariance and scaling properties in the distributions of contributing area and energy in drainage basins." Hydrological Processes, Vol. 8, pp. 125-135. https://doi.org/10.1002/hyp.3360080204
- Leopold, L. B., and Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications. US Government Printing Office, Vol. 252.
- Mandelbrot, B. B. (1982). The Fractal geometry of nature. W.H. Freeman, New York.
- Mandelbrot, B. B., and Van Ness, J. W. (1968). "Fractional Brownian motion. fractional noises and applications." Society for Industrial and Applied Mathematics, Vol. 10, No. 4, pp. 427-437.
- Maritan, A., Rinaldo, A., Rigon, A., Giacometti, A., and Rodriguez-Iturbe, I. (1996). "Scaling laws for river networks." Physical Review E, Vol. 53, No. 2, pp. 1510-1515. https://doi.org/10.1103/PhysRevE.53.1510
- McNamara, J. P., Ziegler, A. D., Wood, S. H., and Vogler, J. B. (2006). "Channel head locations with respect to geomorphologic thresholds derived from a digital elevation model: a case study in northern Thailand." Forest Ecology and Management, Vol. 224, pp. 147-156. https://doi.org/10.1016/j.foreco.2005.12.014
- Moglen, G. E., and Bras, R. L. (1995). "The importance of spatially heterogeneous erosivity and the cumulative area distribution within a basin evolution model." Geomorphology, Vol. 12, pp. 173-185. https://doi.org/10.1016/0169-555X(95)00003-N
- Montgomery, D. R., and Dietrich, W. E. (1992). "Channel initiation and the problem of landscape scale." Science, Vol. 255, No. 5046, pp. 826-830. https://doi.org/10.1126/science.255.5046.826
- Montgomery, D. R., and Foufoula-Georgiou, E. (1993). "Channel network source representation using digital elevation models." Water Resources Research, Vol. 29, No. 12, pp. 3925-3934. https://doi.org/10.1029/93WR02463
- Newman, M. E. J. (2005). "Power laws, Pareto distributions and Zipf's law." Contemporary Physics, Vol. 46, No. 5, pp. 323-351. https://doi.org/10.1080/00107510500052444
- Nicholson, B. G., Hancock, G. R., Cohen, S., Willgoose, G. R., and Rey-Lescure, O. (2013). "An assessment of the fluvial geomorphology of subcatchments in Parana Valles, Mars." Geomorphology, Vol. 183, pp. 96-109. https://doi.org/10.1016/j.geomorph.2012.07.018
- Paik, K., and Kumar, P. (2007) "Inevitable self-similar topology of binary trees and their diverse hierarchical density" European Physical Journal B, Vol. 60, No. 2, pp. 247-258. https://doi.org/10.1140/epjb/e2007-00332-y
- Paik, K., and Kumar, P. (2011). "Power-law behavior in geometric characteristics of full binary trees." Journal of Statistical Physics, Vol. 142, No. 4, pp. 862-878. https://doi.org/10.1007/s10955-011-0125-y
- Perera, H., and Willgoose, G. (1998). "A physical explanation of the cumulative area distribution curve." Water Resources Research, Vol. 34, No. 5, pp. 1335-1343. https://doi.org/10.1029/98WR00259
- Pilgrim, D. H. (1977). "Isochrones of travel time and distribution of flood storage from a tracer study on a small watershed." Water Resources Research, Vol. 13, No. 3, 587-595. https://doi.org/10.1029/WR013i003p00587
- Rodriguez-Iturbe, I., and Rinaldo, A. (2003). Fractal river basins-Chance and self-organization. Cambridge.
- Rodriguez-Iturbe, I., Ijjasz-Vasquez, E. J., Bras, R. L., and Tarboton, D. G. (1992). "Power law distributions of discharge, mass, and energy in river basins." Water Resources Research, Vol. 28, No. 4, pp. 1089-1093. https://doi.org/10.1029/91WR03033
- Takayasu, H., Nishikawa, I., and Tasaki, H. (1988). "Power-law mass distribution of aggregation systems with injection." Physical Review A, Vol. 37, pp. 3110-3117. https://doi.org/10.1103/PhysRevA.37.3110
- Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I. (1991). "A coupled channel network growth and hillslope evolution model, 1. Theory." Water Resources Research, Vol. 27, No. 7, pp. 1671-1684. https://doi.org/10.1029/91WR00935