References
- Wilson, E. B., "Theory of an Aeroplane Encountering Gusts", Proceedings of the National Academy of Sciences, Vol. 2, No. 5, 1916, pp. 294-297. https://doi.org/10.1073/pnas.2.5.294
- Etkin, B., "A Theory of the Response of Airplanes to Random Atmospheric Turbulence", Journal of the Aerospace Sciences, Vol. 26, No. 7, 1959, pp. 409-420. DOI: 10.2514/8.8127
- Regulations, F. A., "Part 25-Airworthiness Standards: Transport Category Airplanes", Federal Aviation Administration (FAA), USA, 1970.
- "Certification Specifications for Large Aeroplanes CS-25", European Aviation Safety Agency, 2008.
- Hoblit, F. M., Gust Loads on Aircraft: Concepts and Applications, AIAA Education Series, 1988.
- Beal, T. R., "Digital Simulation of Atmospheric Turbulence for Dryden and Von Karman Models", Journal of Guidance, Control, and Dynamics, Vol. 16, No. 1, 1993, pp. 132-138. DOI: 10.2514/3.11437
- Zhenxing, G. and Hongbin, G., "Generation and Application of Spatial Atmospheric Turbulence Field in Flight Simulation", Chinese Journal of Aeronautics, Vol. 22, No. 1, 2009, pp. 9-17. DOI: 10.1016/S1000-9361(08)60063-1
- Kanda, A. and Dowell, E. H., "Worst-Case Gust- Response Analysis for Typical Airfoil Section with Control Surface", Journal of Aircraft, Vol. 42, No. 4, 2005, pp. 956-962. DOI: 10.2514/1.8931
- Khodaparast, H. H. and Cooper, J. E., "Rapid Prediction of Worst-Case Gust Loads Following Structural Modification", AIAA Journal, Vol. 52, No. 2, 2014, pp. 242-254. DOI: 10.2514/1.J052031
- Wang, Z., Chen, P. C., Liu, D. D. and Mook, D. T., "Nonlinear-Aerodynamics/Nonlinear-Structure Interaction Methodology for a High-Altitude Long-Endurance Wing", Journal of Aircraft, Vol. 47, No. 2, 2010, pp. 556-566. DOI: 10.2514/1.45694
- Raveh, D. E., "CFD-Based Models of Aerodynamic Gust Response", Journal of Aircraft, Vol. 44, No. 3, 2007, pp. 888-897. DOI: 10.2514/1.25498
- Albano, E., "A Doublet-Lattice Method for Calculating Lift Distributions on Oscillating Surfaces in Subsonic Flows", AIAA Journal, Vol. 7, No. 2, 1969, pp. 279-285. https://doi.org/10.2514/3.5086
- Eversman, W. and Tewari, A., "Consistent Rational Fraction Approximation for Unsteady Aerodynamics", Journal of Aircraft, Vol. 28, No. 9, 1991, pp. 545-552. DOI: 10.2514/3.46062
- Peng, W., Zhang, J. and You, L., "The Hybrid Uncertain Neural Network Method for Mechanical Reliability Analysis", International Journal of Aeronautical and Space Sciences, Vol. 16, No. 4, 2015, 510-519. DOI: 10.5139/IJASS.2015.16.4.510
- Wan, Z., Wang, X. and Yang, C., "A Highly Efficient Aeroelastic Optimization Method Based on a Surrogate Model", International Journal of Aeronautical and Space Sciences, Vol. 17, No. 4, 2016, pp. 491-500. DOI: 10.5139/ IJASS.2016.17.4.491
- Yao, W. and Liou, M. S., "Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network", 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, Indiana, 2012.
- Mannarino, A. and Mantegazza, P., "Nonlinear Aeroelastic Reduced Order Modeling by Recurrent Neural Networks", Journal of Fluids and Structures, Vol. 48, 2014, pp. 103-121. DOI: 10.1016/j.jfluidstructs.2014.02.016
- Ly, U. L. and Chan, Y. K., "Time-Domain Computation of Aircraft Gust Covariance Matrices", 6th Atmospheric Flight Mechanics Conference, Guidance, Navigation, and Control and Co-located Conferences, Danvers, MA, 1980.
- Bisplinghoff, R. L., Ashley, H. and Halfman, R. L., Aeroelasticity, Dover Publications Inc., New York, 1955.
- Kwon, Y. W. and Bang, H., The Finite Element Method Using MATLAB, CRC Press, New York, 2000.
- Nguyen, A. T. and Han, J., "Simulation and Analyses of Dynamic Gust Responses of a Flexible Aircraft Wing Under Continuous Random Atmospheric Turbulence", 16th Asia Pacific Vibration Conference, Hanoi, Vietnam, 2016.
- Katz, J. and Plotkin, A., Low-Speed Aerodynamics: From Wing Theory to Panel Methods, Cambridge University Press, 2001.
- Nguyen, A. T., Kim, J. K., Han, J. S. and Han, J. H., "Extended Unsteady Vortex-Lattice Method for Insect Flapping Wings", Journal of Aircraft, Vol. 53, No. 6, 2016, pp. 1709-1718. DOI: 10.2514/1.C033456
- Nguyen, A. T., Han, J. S. and Han, J. H., "Effect of Body Aerodynamics on the Dynamic Flight Stability of the Hawkmoth Manduca Sexta", Bioinspiration & Biomimetics, Vol. 12, No. 1, 2017, p. 016007. DOI: 10.1088/1748- 3190/12/1/016007
- Willis, D. J., Peraire, J. and White, J. K., "A Combined pFFT-Multipole Tree Code, Unsteady Panel Method with Vortex Particle Wakes", International Journal for Numerical Methods in Fluids, Vol. 53, No. 8, 2007, pp. 1399-1422. DOI: 10.1002/fld.1240
- Jian, Z. and Jinwu, X., "Nonlinear Aeroelastic Response of High-Aspect-Ratio Flexible Wings", Chinese Journal of Aeronautics, Vol. 22, No. 4, 2009, pp. 355-363. DOI: 10.1016/S1000-9361(08)60111-9
- Craig, R. R. and Kurdila, A. J., Fundamentals of Structural Dynamics, John Wiley & Sons, 2006.
- Lynch, D. R., Numerical Partial Differential Equations for Environmental Scientists and Engineers: A First Practical Course, Springer, 2004.
- Beale, M. H., Hagan, M. T. and Demuth, H. B., Neural Network Toolbox TM User's Guide, The Math Works, Inc., 2012.
- Marquardt, D. W., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2, 1963, pp. 431-441. DOI: 10.1137/0111030
- MacKay, D. J. C., "Bayesian Interpolation", Neural Computation, Vol. 4, No. 3, 1992, pp. 415-447. DOI: 10.1162/ neco.1992.4.3.415
- "Flying Qualities of Piloted Aircraft MIL-STD-1797", Department of Defense, 1997.
Cited by
- Self-Tuning Proportional Double Derivative-Like Neural Network Controller for a Quadrotor pp.2093-2480, 2018, https://doi.org/10.1007/s42405-018-0091-6
- Prediction of engine failure time using principal component analysis, categorical regression tree, and back propagation network pp.1868-5145, 2018, https://doi.org/10.1007/s12652-018-0997-7