# ARITHMETIC OF MODULAR FORMS 

SoYoung Choı*

Abstract. We investigate congruence properties of Fourier coefficients of modular forms for $\Gamma_{0}^{+}(2)$.

## 1. Introduction and statement of results

The congruence properties of modular forms were investigated by many mathematicians. In particular, Choie, Kohnen and Ono [4]found congruence properties of the coefficients of modular forms for $S L_{2}(\mathbb{Z})$. Choi [1] generalized their result to modular forms for congruence subgroups. Let $\Gamma_{0}^{+}(p)$ be the group generated by the Hecke group $\Gamma_{0}(p)$ and the Fricke involution $W_{p}=\left(\begin{array}{cc}0 & -1 / \sqrt{p} \\ \sqrt{p} & 0\end{array}\right)$. Choi [2] found some congruence properties of coefficients of modular forms for $\Gamma_{0}^{+}(5)$. In this paper, following the argument in [2, 4], we obtain congruence properties of coefficients of modular forms for $\Gamma_{0}^{+}(2)$. The main result of this paper is the following theorem.

THEOREM 1.1. Let $k$ be a positive integer with $k \equiv 0(\bmod 8)$. Let $f$ be a modular form of weight $k$ for $\Gamma_{0}^{+}(2)$ having a Fourier expansion of the form

$$
f(z)=\sum_{n=0}^{\infty} a_{f}(n) q^{n}, \quad\left(q=e^{2 \pi i z}\right)
$$

Suppose that $f(z)$ has integral Fourier coefficients. Then for any integer $b$ with $2^{b} \geq k / 8+1$ we have

$$
a_{f}\left(2^{b}\right) \equiv 0 \quad(\bmod 2)
$$

Received September 14, 2017; Accepted October 16, 2017.
2010 Mathematics Subject Classification: Primary 11E12, 11F11.
Key words and phrases: modular forms, modular $J$-invariant.
This work was supported by Development Fund Foundation, Gyeongsang National University, 2015.

## 2. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Let $k>2$ be an even integer. Let $E_{k}$ be the normalized Eisenstein series of weight $k$ for $S L_{2}(\mathbb{Z})$ defined by

$$
E_{k}(z):=1-\frac{2 k}{B_{k}} \sum_{n \geq 1} \sigma_{k-1}(n) q^{n} \quad\left(q=e^{2 \pi i z}\right)
$$

where $\sigma_{k-1}(n)$ is the usual divisor sum of $n$ and $B_{k}$ is the $k$-th Bernoulli number. Let

$$
E_{k}^{+}(z):=\frac{E_{k}(z)+2^{k / 2} E_{k}(2 z)}{1+2^{k / 2}}
$$

Then $E_{k}^{+}$is a modular form of weight $k$ for $\Gamma_{0}^{+}(2)$ (see [3]). For Dedekind eta function $\eta(z)=q^{1 /(24)} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$, let

$$
\Delta_{2}^{+}(z):=\eta(z)^{8} \eta(2 z)^{8}=q-8 q^{2}+O\left(q^{3}\right)
$$

Then $\Delta_{2}^{+}$which is a cusp form of weight 8 for $\Gamma_{0}^{+}(2)$ has no zeros on the complex upper half plane and has integral coefficients (see [3]). We now consider a hauptmodul for $\Gamma_{0}^{+}(2)$ defined by

$$
j_{2}^{+}(z)=\frac{E_{4}^{+}(z)^{2}}{\Delta_{2}^{+}(z)}=\frac{1}{q}+O(1)
$$

Then $j_{2}^{+}$has integral Fourier coefficients. Let $r:=k / 8+1$. We notice

$$
\frac{-1}{2 \pi i} \frac{d j_{2}^{+}(z)}{d z}=\frac{E_{10}^{+}(z)}{\Delta_{2}^{+}(z)}
$$

and the functions

$$
j^{m} \frac{d j_{2}^{+}(z)}{d z}=\frac{1}{m+1} \frac{d j_{2}^{+}(z)^{m+1}}{d z}
$$

has zero constant term for each nonnegative integer $m$. Let $b$ an integer with $2^{b} \geq r$. Since

$$
\left(j_{2}^{+}\right)^{2^{b}-r} \frac{f}{\left(\Delta_{2}^{+}\right)^{r-1}}
$$

is a polynomial in $j_{2}^{+}$, by linearity we obtain that the constant term of

$$
\left(j_{2}^{+}\right)^{2^{b}-r} \frac{f}{\left(\Delta_{2}^{+}\right)^{r-1}} \frac{1}{2 \pi i} \frac{d j_{2}^{+}(z)}{d z}
$$

is zero. Thus we have that the constant term of

$$
\left(j_{2}^{+}\right)^{2^{b}-r} \frac{-33 f}{\left(\Delta_{2}^{+}\right)^{r-1}} \frac{1}{2 \pi i} \frac{d j_{2}^{+}(z)}{d z}=\left(j_{2}^{+}\right)^{2^{b}-r} \frac{f}{\left(\Delta_{2}^{+}\right)^{r-1}} \frac{33 E_{10}^{+}(z)}{\Delta_{2}^{+}(z)}
$$

is zero $(\bmod 2)$. Since

$$
\begin{aligned}
\left(j_{2}^{+}\right)^{2^{b}-r} \frac{f}{\left(\Delta_{2}^{+}\right)^{r-1}} \frac{33 E_{10}^{+}(z)}{\Delta_{2}^{+}(z)} & \equiv\left(j_{2}^{+}\right)^{2^{b}-r} \frac{33 E_{10}^{+}(z)}{\Delta_{2}^{+}(z)^{r}} f \\
& \equiv \frac{\left(E_{4}^{+}(z)\right)^{2^{b+1}-2 r} 33 E_{10}^{+}(z)}{\Delta_{2}^{+}\left(2^{b} z\right)} f(\bmod 2)
\end{aligned}
$$

and $33 E_{10}^{+}(z) \equiv 1 \equiv E_{4}^{+}(z)(\bmod 2)$, we have that the constant term of

$$
\frac{\left(E_{4}^{+}(z)\right)^{2^{b+1}-2 r} 33 E_{10}^{+}(z)}{\Delta_{2}^{+}\left(2^{b} z\right)} f
$$

is congruent to the constant term of

$$
\frac{f}{\Delta_{2}^{+}\left(2^{b} z\right)} \quad(\bmod 2)
$$

From the fact that $1 / \Delta_{2}^{+}\left(2^{b} z\right)=q^{-2^{b}}+8+O(q)$, we have that the constant term of

$$
\frac{f}{\Delta_{2}^{+}\left(2^{b} z\right)}
$$

is $a_{f}\left(2^{b}\right)+8 a_{f}(0)$ which gives

$$
a_{f}\left(2^{b}\right) \equiv 0 \quad(\bmod 2)
$$

This completes the proof of Theorem 1.1.

## References

[1] D. Choi and Y. Choie, Linear relations among the Fourier coefficients of modular forms on groups $\Gamma_{0}(N)$ of genus zero and their applications, J. Math. Anal. Appl. 326 (2007), no. 1, 655-666.
[2] S. Choi, Congruence properties of coefficients of modular forms for $\Gamma_{0}^{+}(5)$, J. Chungcheong Math. Soc. 26 (2013), no. 4, 923-926.
[3] S. Choi and C. H. Kim, Basis for the space of weakly holomorphic modular forms in higher level cases, J. Number Theory, 133 (2013), 1300-1311.
[4] Y. Choie, W. Kohnen, and K. Ono, Linear relations between modular form coefficients and non-ordinary primes, Bull. London Math. Soc. 37 (2005), no. 3, 335-341.
*
Department of Mathematics Education and RINS
Gyeongsang National University
Jinju 52828, Republic of Korea
E-mail: mathsoyoung@gnu.ac.kr

