A NOTE ON MULTIPLIERS OF $A C$-ALGEBRAS

Yong Hoon Lee*

Abstract

In this paper, we introduce the notion of multiplier of $A C$-algebra and consider the properties of multipliers in $A C$ algebras. Also, we characterized the fixed set $F i x_{d}(X)$ by multipliers. Moreover, we prove that $M(X)$, the collection of all multipliers of $A C$-algebras, form a semigroup under certain binary operation.

1. Introduction

In [2], a partial multiplier on a commutative semigroup (A, \cdot) has been introduced as a function F from a nonvoid subset D_{F} of A into A such that $F(x) \cdot y=x \cdot F(y)$ for all $x, y \in D_{F}$. In this paper, we introduce the notion of multiplier of $A C$-algebra and consider the properties of multipliers in $A C$-algebras. Also, we characterized the fixed set $F i x_{d}(X)$ by multipliers. Moreover, we prove that $M(X)$, the collection of all multipliers of AC-algebras, form a semigroup under certain binary operation.

2. Preliminaries

An algebra $(X, *, 0)$ with a binary operation $*$ is called an $A C$-algebra if it satisfies the following axioms for all $x, y \in X$,
(A1) $x *(y * z)=(x * y) * z$,
(A2) $x * y=y * x$,
(A3) $x * y=0$ if and only if $x=y$,
In an $A C$-algebra X, the following properties hold for all $x, y, z \in X$,
(A4) $(x * y) * z=(x * z) * y$,
(A5) $(x *(x * y)) * y=0$,
(A6) $0 *(x * y)=(0 * x) *(0 * y)$,
Received April 11, 2017; Accepted September 05, 2017.
2010 Mathematics Subject Classification: Primary 16Y30, 03G25.
Key words and phrases: $A C$-algebra, multiplier, simple multiplier, isotone.
(A7) $((x * z) *(y * z)) *(x * y)=0$,
(A8) $((x * y) *(x * z)) *(z * y)=0$,
(A9) $x * y=0$ if and only if $(x * z) *(y * z)=0$,
(A10) $x * y=0$ if and only if $(z * x) *(z * y)=0$,
(A11) $x * y=x$ if and only if $y=0$,
(A12) $x=y *(y * x)$,
(A13) $(x *(x * y)) *(x * y)=y *(y * x)$,
(A14) $x * x=0$,
(A15) $x * 0=x$.
A non-empty subset A of X is called a subalgebra of X if $x * y \in A$ for all $x, y \in A$.
Let X be a $A C$-algebra. We define the binary operation " \leq " as the following,

$$
x \leq y \Leftrightarrow x * y=0
$$

for all $x, y \in X$.
Definition 2.1. A non-empty subset I of X is called an ideal of X if
(i) $0 \in I$,
(ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in I$.

Lemma 2.2. Let $(X, *, 0)$ be an $A C$-algebra. Then the following holds true.
(i) The left cancellation laws holds, i.e., $z * x=z * y$ implies $x=y$.
(ii) The right cancellation laws holds, i.e., $x * z=y * z$ implies $x=y$.

Proof. (i) Let $z * x=z * y$ for all $x, y, z \in X$. Then $x=z *(z * x)=$ $z *(z * y)=y$.
(ii) Let $x * z=y * z$ for all $x, y, z \in X$. Then $x=z *(z * x)=$ $z *(x * z)=z *(y * z)=z *(z * y)=y$.

For an $A C$-algebra, we denote $x \wedge y=y *(y * x)$ for all $x, y \in X$.

3. Multipliers of $A C$-algebras

In what follows, let X denote a $A C$-algebra unless otherwise specified.
Definition 3.1. Let X be a $A C$-algebra. By a multiplier of X, we mean a self map f of X satisfying the identity

$$
f(x * y)=f(x) * y
$$

for all $x, y \in X$.

Example 3.2. Let $X:=\{0,1,2,3\}$ be a set in which "*" is defined by

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

It is easy to check that $(X, *)$ is an $A C$-algebra. Define a map $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}3 & \text { if } x=0 \\ 2 & \text { if } x=1 \\ 1 & \text { if } x=2 \\ 0 & \text { if } x=3\end{cases}
$$

Then it is easy to check that f is a multiplier of an $A C$-algebra X.
Example 3.3. Let \mathbb{Z} be the set of all integers and " - " be a minus operation on \mathbb{Z}. Then $(\mathbb{Z},-, 0)$ is a $A C$-algebra. Let $f(x)=x-1$ for all $x \in \mathbb{Z}$. Then

$$
f(x-y)=(x-y)-1=(x-1)-y=f(x)-y
$$

for all $x, y \in \mathbb{Z}$, and so f is a multiplier of X.
Definition 3.4. A self map f of an $A C$-algebra X is said to be regular if $f(0)=0$.

Proposition 3.5. Let f be a multiplier of X. Then
(i) $f(0)=f(x) * x$ for all $x \in X$.
(ii) f is $1-1$.

Proof. (i) Let $x \in X$. Then $x * x=0$. Hence we have

$$
f(0)=f(x * x)=f(x) * x
$$

for all $x \in X$.
(ii) Let $x, y \in X$ be such that $f(x)=f(y)$. Then by (i), we have $f(0)=f(x) * x$ and $f(0)=f(y) * y$. Thus

$$
f(x) * x=f(y) * y
$$

which implies $f(x) * x=f(x) * y$. By Lemma 2.1, we have $x=y$.
Theorem 3.6. Let f be a multiplier of X. Then $f(x)=x$ if and only if f is regular.

Proof. Let f is regular. Then we have

$$
f(0)=f(x * x)=f(x) * x=0
$$

which implies $f(x)=x$ from (A3). Conversely, let $f(x)=x$ for all $x \in X$. Then it is clear that $f(0)=0$, which f is regular.

Theorem 3.7. Let X be a $A C$-algebra. If f is a regular multiplier of X, then $f(x) \leq x$ for all $x, y \in X$.

Proof. Let f be a regular multiplier of X. Then we have $f(0)=$ $f(x * x)=f(x) * x=0$, i.e., $f(x) \leq x$.

Proposition 3.8. Let X be a $A C$-algebra and let f be a multiplier of X. If $f(x) * x=0$ for all $x \in X$, then f is regular.

Proof. Let $f(x) * x=0$ and let f be a multiplier of X. Then $f(0)=$ $f(x * x)=f(x) * x=0$, which implies that f is a regular multiplier of X.

Proposition 3.9. Let f be a multiplier of X. Then the following holds true.
(i) If there is an element $x \in X$ such that $f(x)=x$, then f is the identity.
(ii) If there is an element $x \in X$ such that $f(y) * x=0$ or $x * f(y)=0$ for all $y \in X$, then $f(y)=x$, i.e., f is constant.

Proof. (i) Let $f(x)=x$ for some $x \in X$. Then $f(x) * x=0$ by (A3). Hence $f(0)=0$ from Proposition 3.5 (i), i.e., f is regular. This implies that f is an identity map by Theorem 3.6.
(ii) It follows directly from (A3).

Proposition 3.10. Let X be an $A C$-algebra. Then every idempotent multiplier of X is an endomorphism on X.

Proof. Let f be an idempotent multiplier of X. Then $f^{2}(x)=f(x)$ for all $x, y \in X$. Let $x, y \in X$. Then

$$
\begin{aligned}
f(x * y) & =f^{2}(x * y)=f(f(x * y)) \\
& =f(f(x) * y)=f(y * f(x)) \\
& =f(y) * f(x)=f(x) * f(y)
\end{aligned}
$$

which implies that f is an endomorphism on X.
Proposition 3.11. Let X be a $A C$-algebra and f be a multiplier of X. Then $f(x * f(x))=0$ for all $x \in X$.

Proof. Let $x \in X$. Then we have

$$
f(x * f(x))=f(x) * f(x)=0
$$

This completes the proof.
Proposition 3.12. Let X be an $A C$-algebra and let f be a regular multiplier. Then $f: X \rightarrow X$ is an identity map if it satisfies $f(x) * y=$ $x * f(y)$ for all $x, y \in X$

Proof. Since f is regular, we have $f(0)=0$. Let $x * f(y)=f(x) * y$ for all $x, y \in X$. Then $f(x)=f(x * 0)=f(x) * 0=x * f(0)=x * 0=x$. Thus f is an identity map.

Definition 3.13. Let f be a multiplier of X. An ideal I of X is said to be f-invariant if $f(I) \subseteq I$.

Theorem 3.14. Let f be a multiplier of X. Then f is regular if and only if every ideal of X is f-invariant.

Proof. Let f be a regular multiplier of X. Then by Theorem 3.6, $f(x)=x$ for all $x \in X$. Now $y \in f(I)$ where I is an ideal of X. Then $y=f(x)$ for some $x \in I$. Thus $y * x=f(x) * x=x * x=0 \in I$, which implies $y \in I$ and $f(I) \subset I$. This implies that I is f-invariant. Conversely, let every ideal of X be f-invariant. Then $f(\{0\}) \subset\{0\}$. Hence $f(0)=0$, which implies that f is regular.

Let f be a multiplier of X. Define a set $F i x_{f}(X)$ by

$$
\operatorname{Fix}_{f}(X):=\{x \in X \mid f(x)=x\}
$$

for all $x \in X$.
Proposition 3.15. Let f be a multiplier of X. Define

$$
f \circ f(x)=f(f(x))
$$

for all $x \in X$. If $x \in \operatorname{Fix}_{f}(X)$, then we have $f \circ f(x)=x$ for all $x \in X$.
Proof. Let $x \in \operatorname{Fix}_{f}(X)$. Then we have

$$
f \circ f(x)=f(f(x))=f(x)=x
$$

This completes the proof.
Proposition 3.16. Let X be an $A C$-algebra and let f be a multiplier on X. If $y \in \operatorname{Fix}_{f}(X)$, we have $x \wedge y \in \operatorname{Fix}_{f}(X)$ for all $x \in X$.

Proof. Let f be a multiplier of X and let $y \in \operatorname{Fix}_{f}(X)$. Then we get for all $x \in X$,

$$
\begin{aligned}
f(x \wedge y) & =f(y *(y * x))=f(y) *(y * x) \\
& =y *(y * x)=x \wedge y
\end{aligned}
$$

This completes the proof.
Theorem 3.17. Let f and g be two idempotent multipliers of X such that $f \circ g=g \circ f$. Then the following conditions are equivalent.
(i) $f=g$.
(ii) $f(X)=g(X)$.
(iii) $\operatorname{Fix}_{f}(X)=F i x_{g}(X)$.

Proof. (i) \Rightarrow (ii): It is obvious.
(ii) \Rightarrow (iii): Let $f(X)=g(X)$ and $x \in \operatorname{Fix}_{f}(X)$. Then $x=f(x) \in$ $f(X)=g(X)$. Hence $x=g(y)$ for some $y \in X$. Now $g(x)=g(g(y))=$ $g^{2}(y)=g(y)=x$. Thus $x \in \operatorname{Fix}_{g}(X)$. Therefore, $\operatorname{Fix}_{f}(X) \subseteq \operatorname{Fix}_{g}(X)$. Similarly, we can obtain $\operatorname{Fix}_{g}(X) \subseteq \operatorname{Fix}_{f}(X)$. Thus Fix $_{f}(X)=$ Fix (X).
(iii) \Rightarrow (i): Let $\operatorname{Fix}_{f}(X)=\operatorname{Fix}_{g}(X)$ and $x \in X$. Since $f(x) \in$ $\operatorname{Fix}_{f}(X)=\operatorname{Fix}_{g}(X)$, we have $g(f(x))=f(x)$. Also, we obtain $g(x) \in$ $F i x_{g}(X)=F i x_{f}(X)$. Hence we get $f(g(x))=g(x)$. Thus we have

$$
f(x)=g(f(x))=(g \circ f)(x)=(f \circ g)(x)=f(g(x))=g(x)
$$

Therefore, f and g are equal in the sense of mappings.
Let X be an $A C$-algebra. Then, for each $a \in X$, we define a map $f_{a}: X \rightarrow X$ by

$$
f_{a}(x)=x * a
$$

for all $x \in X$.
Theorem 3.18. For each $a \in X$, the map f_{a} is a multiplier of X.
Proof. Suppose that f_{a} is a map defined by $f_{a}(x)=x * a$ for each $x \in X$. Then for any $x, y \in X$, we have by (A4),

$$
\begin{aligned}
f_{a}(x * y) & =(x * y) * a=(x * a) * y \\
& =f_{a}(x) * y
\end{aligned}
$$

Hence f_{a} is a multiplier of X. This completes the proof.
We call the multiplier f_{a} of Theorem 3.14 as simple multiplier.
Proposition 3.19. Let X be an $A C$-algebra. Then $f_{0}(x)=x$ for all $x \in X$, i.e., f_{0} is the identity map of X.

Proof. Let $x \in X$. Then

$$
f_{0}(x)=x * 0=x
$$

Hence f_{0} is the identity map of X.
Proposition 3.20. For $p \in X$, the mapping $\beta_{p}(a)=(a * p) * p$ is a multiplier of X.

Proof. Let $p \in X$. Then we have

$$
\begin{aligned}
\beta_{p}(a * b) & =((a * b) * p) * p \\
& =((a * p) * b) * p \\
& =((a * p) * p) * b \\
& =\beta_{p}(a) * b
\end{aligned}
$$

for all $a, b \in X$. This completes the proof.
Let X be a $A C$-algebra. Define $f_{a} \circ f_{b}$ by

$$
f_{a} \circ f_{b}(x)=f_{a}\left(f_{b}(x)=f_{a}(x * b)=(x * b) * a\right.
$$

for all $x, y \in X$.
THEOREM 3.21. The composition of two simple multipliers of an $A C$ algebra is a commutative and associative binary operation.

Proof. If f_{a}, f_{b} and f_{c} are multipliers of an $A C$-algebra, then for all $x, y, z \in X$,

$$
\begin{aligned}
f_{a} \circ f_{b}(x) & =(x * b) * a=x *(b * a)=x *(a * b) \\
& =(x * a) * b=\left(f_{b} \circ f_{a}\right)(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(f_{a} \circ f_{b}\right) \circ f_{c}(x) & =\left(f_{a} \circ f_{b}\right)(x * c)=((x * c) * b) * a=((x * c) * b) * a \\
& =f_{a}((x * c) * b)=f_{a} \circ\left(f_{b} \circ f_{c}\right)(x)
\end{aligned}
$$

This completes the proof.
Theorem 3.22. Let X be an $A C$-algebra and $a, b \in X$. If $f_{a} \circ f_{b}(x)=$ $f_{0}(x)$ for all $x \in X$, then $f_{a}(x)=f_{b}(x)$.

Proof. Let X be an $A C$-algebra and $a, b \in X$. Then

$$
f_{a} \circ f_{b}(x)=(x * b) * a=x *(b * a)=f_{0}(x)=x
$$

for all $x \in X$. From (A11), we have $b * a=0$. Hence by (A2) and (A3), we have $a=b$, which implies $f_{a}(x)=f_{b}$ for all $x \in X$.

Proposition 3.23. Let X be an $A C$-algebra and let f_{1}, f_{2} be two multipliers of X. Then $f_{1} \circ f_{2}$ is also a multiplier of X.

Proof. Let f_{1}, f_{2} be multipliers of X and $x, y \in X$. Then

$$
\begin{aligned}
f_{1} \circ f_{2}(x * y) & =f_{1}\left(\left(f_{2}(x * y)\right)=f_{1}\left(f_{2}(x) * y\right)\right. \\
& =f_{1}\left(f_{2}(x)\right) * y=f_{1} \circ f_{2}(x) * y
\end{aligned}
$$

This completes the proof.
Let X_{1} and X_{2} be two $A C$-algebras. Then $X_{1} \times X_{2}$ is also a $A C$-algebra with respect to the point-wise operation given by

$$
(a, b) *(c, d)=(a * c, b * d)
$$

for all $a, c \in X_{1}$ and $b, d \in X_{2}$.
Proposition 3.24. Let X_{1} and X_{2} be two $A C$-algebras with a zero element respectively. Define a map $f: X_{1} \times X_{2} \rightarrow X_{1} \times X_{2}$ by $f(x, y)=$ $(0, y)$ for all $(x, y) \in X_{1} \times X_{2}$. If $0 * x=0$ for all $x \in X$, then f is a multiplier of $X_{1} \times X_{2}$ with respect to the point-wise operation.

Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$. The we have

$$
\begin{aligned}
f\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & =f\left(x_{1} * x_{2}, y_{1} * y_{2}\right) \\
& =\left(0, y_{1} * y_{2}\right) \\
& =\left(0 * x_{2}, y_{1} * y_{2}\right) \\
& =\left(0, y_{1}\right) *\left(x_{2}, y_{2}\right) \\
& =f\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

Therefore f is a multiplier of the direct product $X_{1} \times X_{2}$.
Definition 3.25. Let X be an $A C$-algebra and let f_{1}, f_{2} be two maps of X. Define the binary operation \wedge as

$$
\left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x)
$$

for all $x \in X$.
Proposition 3.26. Let X be an $A C$-algebra and let f_{1}, f_{2} be two multipliers of X. Then $f_{1} \wedge f_{2}$ is a multiplier of X.

Proof. Let X be an $A C$-algebra and let f_{1}, f_{2} be two multipliers of X. Then by (A12) we have

$$
\begin{aligned}
\left(f_{1} \wedge f_{2}\right)(x * y) & =f_{1}(x * y) \wedge f_{2}(x * y) \\
& =\left(f_{1}(x) * y\right) \wedge\left(f_{2}(x) * y\right) \\
& =\left(f_{2}(x) * y\right) *\left[\left(f_{2}(x) * y\right) *\left(f_{1}(x) * y\right)\right] \\
& =f_{1}(x) * y
\end{aligned}
$$

On the other hand, we get from (A12),

$$
\begin{aligned}
\left(f_{1} \wedge f_{2}\right)(x) * y & =\left(f_{1}(x) \wedge f_{2}(x)\right) * y \\
& =\left(f_{2}(x) *\left(f_{2}(x) * f_{1}(x)\right)\right) * y \\
& =f_{1}(x) * y
\end{aligned}
$$

Hence we have $\left(f_{1} \wedge f_{2}\right)(x * y)=\left(f_{1} \wedge f_{2}\right)(x) * y$.
Theorem 3.27. If X is an $A C$-algebra, $(M(X), \wedge)$ forms a semigroup where $M(X)$ denotes the set of all multipliers of X.

Proof. Let $f_{1}, f_{2}, f_{3} \in M(X)$. Then

$$
\begin{aligned}
\left(\left(f_{1} \wedge f_{2}\right) \wedge f_{3}\right)(x * y) & =\left(f_{1} \wedge f_{2}\right)(x * y) \wedge f_{3}(x * y) \\
& =f_{3}(x * y) *\left(f_{3}(x * y) *\left(f_{1} \wedge f_{2}\right)(x * y)\right) \\
& =\left(f_{1} \wedge f_{2}\right)(x * y) \\
& =f_{1}(x * y) \wedge f_{2}(x * y)
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\left(f_{1} \wedge\left(f_{2} \wedge f_{3}\right)\right)(x * y) & =\left(f_{1}(x * y)\right) \wedge\left(f_{2} \wedge f_{3}\right)(x * y) \\
& =f_{1}(x * y) \wedge\left(\left(f_{2}(x * y) \wedge f_{3}(x * y)\right)\right. \\
& =f_{1}(x * y) \wedge f_{2}(x * y)
\end{aligned}
$$

This shows that $\left(f_{1} \wedge f_{2}\right) \wedge f_{3}=f_{1} \wedge\left(f_{2} \wedge f_{3}\right)$. Thus $M(X)$ forms a semigroup.

Definition 3.28. A $A C$-algebra X is said to be positive implicative if

$$
(x * y) * z=(x * z) *(y * z) \text { for all } x, y, z \in X
$$

Let $M(X)$ denotes the collection of all multipliers on X. Obviously, $0: X \rightarrow X$ defined by $0(x)=0$ for all $x \in X$ and $1: X \rightarrow X$ defined by $1(x)=x$ for all $x \in X$ are in $M(X)$. Hence $M(X)$ is non-empty.

Definition 3.29. A $A C$-algebra X is said to be positive implicative if

$$
(x * y) * z=(x * z) *(y * z) \text { for all } x, y, z \in X
$$

Definition 3.30. Let X be a $A C$-algebra and let $M(X)$ be the collection of all multipliers on X. We define a binary operation "*" on $\mathrm{M}(\mathrm{X})$ by

$$
(f * g)(x)=f(x) * g(x) \text { for all } x \in X \text { and } f, g \in M(X)
$$

Theorem 3.31. Let X be a positive implicative $A C$-algebra. Then $(M(X), *, 0)$ is a positive implicative $A C$-algebra of X.

Proof. (i) Let X be a $A C$-algebra and let $f, g \in M(X)$. Then

$$
\begin{aligned}
(g * f)(x * y) & =(g(x * y)) *(f(x * y)) \\
& =(g(x) * y) *(f(x) * y) \\
& =(g(x) * f(x)) * y=((g * f))(x) * y
\end{aligned}
$$

which implies $g * f \in M(X)$.
(ii) Let $f, g \in M(X)$. Then $(f * g)(x)=f(x) * g(x)=g(x) * f(x)=$ $(g * f)(x)$ for all $x \in X$. Hence $f * g=g * f$ for all $f, g \in M(X)$.
(iii) Let $f, g, h \in M(X)$. Then $(f *(g * h))(x)=(f(x) *(g(x) *$ $h(x)))=(f(x) * g(x)) * h(x)=((f * g) * h)(x)$ for all $x \in X$. Hence $f *(g * h)=(f * g) * h$.
(iv) Let $f * g=0$ for all $f, g \in M(X)$. Then $f(x) * g(x)=0$. Hence $f(x)=g(x)$, which implies $f=g$. Conversely, let $f=g$ for all $f, g \in$ $M(X)$. Then $f(x) * g(x)=0$, which implies $(f * g)(x)=0(x)$. Hence $f * g=0$.
(v) Let $f, g, h \in M(X)$. Then

$$
\begin{aligned}
((f * g) * h)(x) & =((f * g)(x)) * h(x)=(f(x) * g(x)) * h(x) \\
& =(f(x) * h(x)) *(g(x) * h(x)) \\
& =((f * h)(x)) *((g * h)(x)) \\
& =((f * h) *(g * h))(x)
\end{aligned}
$$

for all $x \in X$. This implies $(f * g) * h=(f * g) *(f * h) \in M(X)$.
Theorem 3.32. Let X be a positive implicative $A C$-algebra and let f_{1} and f_{2} be two idempotent multipliers on X. If $f_{1} \circ f_{2}=f_{2} \circ f_{1}$, then $f_{1} * f_{2}$ is an idempotent multiplier on X.

Proof. We know that $f_{1} * f_{2}$ is a multiplier on X from Theorem 3.31. Now

$$
\begin{aligned}
\left(\left(f_{1} * f_{2}\right) \circ\left(\left(f_{1} * f_{2}\right)(x)\right)\right. & =\left(f_{1} * f_{2}\right)\left(f_{1} * f_{2}\right)(x) \\
& =\left(f_{1} * f_{2}\right)\left(f_{1}(x) * f_{2}(x)\right) \\
& =\left(f_{1}\left(f_{1}(x) * f_{2}(x)\right)\right)\left(f_{2}\left(f_{1}(x) * f_{2}(x)\right)\right) \\
& =\left(\left(f_{1} \circ f_{1}\right)(x) * f_{2}(x)\right) *\left(\left(f_{2} \circ f_{1}\right)(x) * f_{2}(x)\right) \\
& =\left(f_{1}(x) * f_{2}(x)\right) *\left(\left(f_{1} \circ f_{2}\right)(x) * f_{2}(x)\right) \\
& =\left(f_{1}(x) * f_{2}(x)\right) *\left(f_{1}\left(f_{2}(x) * f_{2}(x)\right)\right) \\
& =\left(f_{1} * f_{2}\right)(x) * f_{1}(0) \\
& =\left(f_{1} * f_{2}\right)(x) * 0=\left(f_{1} * f_{2}\right)(x) .
\end{aligned}
$$

Thus $\left(f_{1} * f_{2}\right) \circ\left(f_{1} * f_{2}\right)=f_{1} * f_{2}$, which implies $f_{1} * f_{2}$ is idempotent.

Let f be a multiplier of a $A C$-algebra X. Define a $\operatorname{Ker} f$ by

$$
\operatorname{Ker} f=\{x \in X \mid f(x)=0\}
$$

for all $x \in X$.
Theorem 3.33. If f is a multiplier of X and let f be an endomorphism on X, then f is idempotent, i.e., $f^{2}(x)=f(x)$ for all $x \in K$.

Proof. Since f is a multiplier on X, we get

$$
f(x) * f^{2}(x)=f(f(x) * f(x))=f(1)=1
$$

Hence $f(x) \leq f^{2}(x)$. Also since f is an endomorphism on X, we have

$$
f^{2}(x) * f(x)=f(f(x) * x)=f(x) * f(x)=1
$$

which implies $f^{2}(x) \leq f(x)$. Therefore $f^{2}(x)=f(f(x))=f(x)$.

References

[1] J. A. Goguen, The logic of inexact concepts, Synthese, 19 (1969), 325-373
[2] M. Konda, Annihilators in BCK-algebras II, Mem. Fac. Sci. Eng. Shimane. Series B: Mathematics Science, 31 (1998), 21-25.
[3] R. Larsen, An Introduction to the Theory of Multipliers, Berlin: Springer-Verlag, 1971.
[4] K. H. Rosen, Discrete Mathematics and its applications, McGraw-Hill, Boston, Math. J. 2003.
[5] D. Sun, The semigroup characterizations of Nil BCI-algebras, Southeast Asian Bulletin of Mathematics, 26 (2002), 651-657.
[6] T. Zou, The variety of commutative BCI-algebras is 2-based, Southeast Asian Bulletin of Mathematics, 24 (2000), 505-509.
*
Department of Mathematics
Dankook University
Cheonan 31116, Republic of Korea
E-mail: yonghoon@dankook.ac.kr

