DOI QR코드

DOI QR Code

A strain hardening model for the stress-path-dependent shear behavior of rockfills

  • Xu, Ming (Department of Civil Engineering, Tsinghua University) ;
  • Song, Erxiang (Department of Civil Engineering, Tsinghua University) ;
  • Jin, Dehai (Department of Civil Engineering, Tsinghua University)
  • Received : 2016.10.12
  • Accepted : 2017.05.11
  • Published : 2017.11.25

Abstract

Laboratory investigation reveals that rockfills exhibit significant stress-path-dependent behavior during shearing, therefore realistic prediction of deformation of rockfill structures requires suitable constitutive models to properly reproduce such behavior. This paper evaluates the capability of a strain hardening model proposed by the authors, by comparing simulation results with large-scale triaxial stress-path test results. Despite of its simplicity, the model can simulate essential aspects of the shear behavior of rockfills, including the non-linear stress-strain relationship, the stress-dependence of the stiffness, the non-linear strength behavior, and the shearing contraction and dilatancy. More importantly, the model is shown to predict the markedly different stress-strain and volumetric behavior along various loading paths with fair accuracy. All parameters required for the model can be derived entirely from the results of conventional large triaxial tests with constant confining pressures.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Alonso, E.E., Olivella, S., Soriano, A., Pinyol, N.M. and Esteban, F. (2015), "Modelling the response of Lechago earth and rockfill dam", Geotechnique, 61(5), 387-407.
  2. Alonso, E.E., Romero, E. and Ortega, E. (2016), "Yielding of rockfill in relative humidity-controlled triaxial experiments", Acta Geotechnica, 11(3), 455-477. https://doi.org/10.1007/s11440-016-0437-9
  3. Bishop, A.W. and Wesley, L.D. (1975), "A hydraulic triaxial apparatus for controlled stress path testing", Geotechnique, 25(4), 657-670. https://doi.org/10.1680/geot.1975.25.4.657
  4. Canizal, J., Castro, J., Costa, A.D., Sagaseta, C. and Sola, P. (2015), "High rockfill embankment for the extension of an airport main runway", Proceedings of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina, December.
  5. Charles, J.A. (2008), "The engineering behaviour of fill materials, the use, misuse and disuse of case histories", Geotechnique, 58(7), 541-570. https://doi.org/10.1680/geot.2008.58.7.541
  6. Charles, J.A. and Watts, K.S. (1980), "The influence of confining pressure on the shear strength of compacted rockfill", Geotechnique, 30(4), 353-367. https://doi.org/10.1680/geot.1980.30.4.353
  7. Costa, L.M. and Alonso, E.E. (2009), "Predicting the behavior of an earth and rockfill dam under construction", J. Geotech. Geoenviron. Eng., 135(7), 851-862. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000058
  8. Duncan, J.M. (1996), "State of the art, limit equilibrium and finite-element analysis of slopes", J. Geotech. Eng., 122(7), 577-596. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
  9. Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil. Mech. Found. Div., 96(5), 1629-1653.
  10. Duncan, J.M., Wright, S.G. and Brandon, T.L. (2014), Soil Strength and Slope Stability, John Wiley and Sons.
  11. Florkiewicz, A. and Kubzdela, A. (2013), "Factor of safety in limit analysis of slopes", Geomech. Eng., 5(5), 485-497. https://doi.org/10.12989/gae.2013.5.5.485
  12. Gasparre, A., Hight, D.W., Coop, M.R. and Jardine, R.J. (2014), "The laboratory measurement and interpretation of the small-strain stiffness of stiff clays", Geotechnique, 64(12), 942-953. https://doi.org/10.1680/geot.13.P.227
  13. Griffiths, D.V. and Marquez, R.M. (2007), "Three-dimensional slope stability analysis by elasto-plastic finite elements", Geotechnique, 57(3), 537-546. https://doi.org/10.1680/geot.2007.57.6.537
  14. Hu, W., Dano, C., Hicher, P.Y., Touzo, J.Y.L., Derkx, F. and Merliot, E. (2011), "Effect of sample size on the behavior of granular materials", ASTM Geotech. Test. J., 34(3), 186-197.
  15. Hunter, G. and Fell, R. (2003), "Rockfill modulus and settlement of concrete face rockfill dams", J. Geotech. Geoenviron. Eng., 129(10), 909-917. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:10(909)
  16. Indraratna, B., Nimbalkar, S., Coop, M. and Sloan, S.W. (2014), "A constitutive model for coal-fouled ballast capturing the effects of particle degradation", Comput. Geotech., 61, 96-107. https://doi.org/10.1016/j.compgeo.2014.05.003
  17. Indraratna, B., Sun, Q. and Nimbalkar, S. (2015), "Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage", Can. Geotech. J., 52(1), 73-86. https://doi.org/10.1139/cgj-2013-0361
  18. Itasca (2005), User's Guide for FLAC Version 5.0.
  19. Kovacevic, N., Hight, D.W., Potts, D.M. and Carter, I.C. (2013), "Finite-element analysis of the failure and reconstruction of the main dam embankment at Abberton Reservoir, Essex, UK", Geotechnique, 63(9), 753-767. https://doi.org/10.1680/geot.12.P.066
  20. Lade, P.V. and Duncan, J.M. (1975), "Stress-path dependent behaviour of cohesionless soil", J. Geotech. Eng. Div., 102(1), 51-68.
  21. Li, S., Yu, S., Shangguan, Z. and Wang, Z. (2016), "Estimating model parameters of rockfill materials based on genetic algorithm and strain measurements", Geomech. Eng., 10(1), 37-48. https://doi.org/10.12989/gae.2016.10.1.037
  22. Liu, H. and Zou, D. (2012), "Associated generalized plasticity framework for modeling gravelly soils considering particle breakage", J. Eng. Mech., 139(5), 606-615.
  23. Modares, M. and Quiroz, J.E. (2015), "Structural analysis framework for concrete-faced rockfill dams", J. Geomech., 16(1), 04015024.
  24. Nagahara, H., Fujiyama, T., Ishiguro, T. and Ohta, H. (2004), "FEM analysis of high airport embankment with horizontal drains", Geotext. Geomembr., 22(2), 49-62. https://doi.org/10.1016/S0266-1144(03)00051-7
  25. Nair, A.M. and Latha, G.M. (2012), "Taming of large diameter triaxial setup", Geomech. Eng., 4(4), 251-262. https://doi.org/10.12989/gae.2012.4.4.251
  26. Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S. and Hicher, P.Y. (2014), "The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data", Acta Mech., 225(8), 2199-2216. https://doi.org/10.1007/s00707-014-1127-z
  27. Rowe, P.W. (1962), "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact", Proceedings of the Royal Society, 269, 500-527. https://doi.org/10.1098/rspa.1962.0193
  28. Seo, M.W., Ha, I.S., Kim, Y.S. and Olson, S.M. (2009), "Behavior of concrete-faced rockfill dams during initial impoundment", J. Geotech. Geoenviron. Eng., 135(8), 1070-1081. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000021
  29. Sloan, S.W. (2013), "Geotechnical stability analysis", Geotechnique, 63(7), 531-571. https://doi.org/10.1680/geot.12.RL.001
  30. Soriano, A. and Sanchez, F.J. (1999), "Settlements of railroad high embankments", Proceedings of the 12th European Conference on Soil Mechanics and Geotechnical Engineering, Amsterdam, Netherlands, June.
  31. Sun, D., Chen, L., Zhang, J. and Zhou, A. (2015), "Bifurcation analysis of over-consolidated clays in different stress paths and drainage conditions", Geomech. Eng., 9(5), 669-685. https://doi.org/10.12989/gae.2015.9.5.669
  32. Terzi, N.U. and Selcuk, M.E. (2015), "Nonlinear dynamic behavior of pamukcay earthfill dam", Geomech. Eng., 9(1), 83-100. https://doi.org/10.12989/gae.2015.9.1.083
  33. Varadarajan, A., Sharma, K.G., Abbas, S.M. and Dhawan A.K. (2006), "Constitutive model for rockfill materials and determination of material constants", J. Geomech., 6(4), 226-237. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:4(226)
  34. Xiao, Y., Liu, H., Chen, Y., Jiang, J. and Zhang, W. (2014), "State-dependent constitutive model for rockfill materials", J. Geomech., 15(5), 04014075.
  35. Xu, M., Bloodworth, A. and Clayton, C.R.I. (2007a), "Behavior of a stiff clay behind embedded integral abutments", J. Geotech. Geoenviron. Eng., 133(6), 721-730. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(721)
  36. Xu, M., Clayton, C.R.I. and Bloodworth, A. (2007b), "The earth pressure behind full-height frame integral abutments supporting granular backfill", Can. Geotech. J., 44(3), 284-298. https://doi.org/10.1139/t06-122
  37. Xu, M. and Song, E. (2009), "Numerical simulation of the shear behavior of rockfills", Comput. Geotech., 36(8), 1259-1264. https://doi.org/10.1016/j.compgeo.2009.05.010
  38. Xu, M., Song, E. and Cao, G. (2009), "Compressibility of broken rock-fine grain soil mixture", Geomech. Eng., 1(2), 169-178. https://doi.org/10.12989/gae.2009.1.2.169
  39. Xu, M., Song, E. and Chen, J. (2012), "A large triaxial investigation of the stress-path-dependent behavior of compacted rockfill", Acta Geotech., 7(3), 167-175. https://doi.org/10.1007/s11440-012-0160-0
  40. Yang, G., Sun, X., Yu, Y. and Zhang, B. (2010), "Experimental study of mechanical behavior of a coarsegrained material under various stress paths", Rock Soil Mech., 31(4), 1118-1122.
  41. Zhang, B., Jie, Y. and Kong, D. (2013), "Particle size distribution and relative breakage for a cement ellipsoid aggregate", Comput. Geotech., 53, 31-39. https://doi.org/10.1016/j.compgeo.2013.04.007
  42. Zhang, J.M., Yang, Z., Gao, X. and Zhang, J. (2015), "Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake", Soil Dyn. Earthq. Eng., 76, 145-156. https://doi.org/10.1016/j.soildyn.2015.03.014
  43. Zhou, W., Li, S., Ma, G., Chang, X. and Cheng, Y. (2016), "Assessment of the crest cracks of the Pubugou rockfill dam based on parameters back analysis", Geomech. Eng., 11(4), 571-585. https://doi.org/10.12989/gae.2016.11.4.571