References
- Abdollahzadeh Shahrbabaki, E. and Alibeigloo, A. (2014), "Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method", Compos. Struct., 111, 362-370. https://doi.org/10.1016/j.compstruct.2014.01.013
- Atteshamuddin, S.S. and Yuwaraj, M.Gh. (2017), "On the free vibration of angle-ply laminated composite and soft core sandwich plates", Int. J. Sandw. Struct., In press.
- Chetan, S.J., Madhusudan, M., Vidyashankar, S. and Charles Lu, Y. (2017), "Modelling of the interfacial damping due to nanotube agglomerations in nanocomposites", Smart Struct. Syst., 19(1), 57-66. https://doi.org/10.12989/sss.2017.19.1.057
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 703-710.
- Ke, L.L., Liu, C. and Wang, Y.S (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E, 66, 93-106. https://doi.org/10.1016/j.physe.2014.10.002
- Kiani, K. (2014), "Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories", Physica E, 57, 179-192. https://doi.org/10.1016/j.physe.2013.10.034
- Lanhe, W., Wang, H. and Wang, D. (2007), "Dynamic stability analysis of FGM plates by the moving leastsquares differential quadrature method", Compos. Struct., 77(3), 383-394. https://doi.org/10.1016/j.compstruct.2005.07.011
- Lei, Y., Adhikari, S. and Friswell, M.I. (2013), "Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams", Int. J. Eng. Sci., 66-67, 1-13. https://doi.org/10.1016/j.ijengsci.2013.02.004
- Li, Y.S., Cai, Z.Y. and Shi, S.Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529. https://doi.org/10.1016/j.compstruct.2014.01.033
- Mantari, J.L. and Guedes Soares, C. (2014), "Four-unknown quasi-3D shear deformation theory for advanced composite plates", Compos. Struct., 109, 231-9. https://doi.org/10.1016/j.compstruct.2013.10.047
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metal. Mater., 21(5), 571- 574. https://doi.org/10.1016/0001-6160(73)90064-3
- Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007
- Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2009), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", Int. J. Sandw. Struct., 12(3), 307-326.
- Phung-Van, P., Abdel-Wahab, M. and Liew, K.M. (2017), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149.
- Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection", Int. J. Nonlinear Mech., 59, 37-51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compo. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending buckling and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008
- Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39(18), 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058
- Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2017), "Stochastic micro-vibration response characteristics of a sandwich plate with MR visco-elastomer core and mass", Smart Struct. Syst., 16(1), 141-162. https://doi.org/10.12989/sss.2015.16.1.141