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【Abstract】In this paper, we deal with some axiomatic extensions of the 
involutive micanorm logic IMICAL. More precisely, first, the two involutive 
micanorm-based logics PnIMICA L and FPnIMICA L are introduced. Their 
algebraic structures are then defined, and their corresponding algebraic 
completeness is established. Next, standard completeness is established for 
FPnIMICAL using construction in the style of Jenei-Montagna.
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1. Introduction

Metcalfe and Montagna (2007) introduced the weakening-free 
fuzzy logics U L (Uninorm logic), IU L (Involutive uninorm logic), 
U ML (Uninorm mingle logic), and IU ML (Involutive uninorm 
mingle logic) as substructural fuzzy logics based on uninorms1), 
and established standard completeness, i.e., completeness with 
respect to (w.r.t.) the corresponding unit interval structures, for 
them (except IU L2)). One interesting fact is that the system IU ML 
is not the system U ML with the involution axiom ~~φ → φ. 
This system further requires the fixed-point axiom (F) t ↔ f. 
This makes us to think that some involutive fuzzy logics require 
the axiom (F) for their standard completeness. This idea is very 
natural in the sense that the standard negation 1 - x has the 
fixed-point 1/2, i.e., 1/2 = ～(1/2).

The purpose of this paper is to verify the idea that some 
involutive non-associative basic fuzzy logics require that axiom for 
their standard completeness. As its simple example, we introduce 
one system without the fixed-point axiom and its extension having 
that axiom and establish standard completeness for the second 
system.

Before introducing the systems, we note some facts associated 
with those systems. The present author introduced micanorms 
(binary monotonic identity commutative aggregation operations on 

 1) Uninmorms are functions introduced by Yager and Rybalov (1996) as a 
generalization of t-norms where the identity can lie anywhere in [0, 1].

 2) For the proof of standard completeness for IUL, see Wang (201+).



Involutive Micanorm Logics with the n-potency axiom 275

the real unit interval [0, 1]) and logics based on micanorms and 
provided standard completeness for involutive such logics, which 
was a problem left open in Horčík (2011), using the 
Jenei-Montagna-style construction introduced in Esteva et al. 
(2002) and Jenei & Montagna (2002). After providing such 
completeness, he stated as follows:

Wang defined a new monoid ⊙ based on Wang's monoid ○W 
for involution and provided standard completeness for CnIU L in 
Wang (2013). Since Yang's monoid ○Y ̋̋̋̋̋″ is also Wang's 
monoid, we can also define such a monoid based on ○Y ̋″ and 
provide standard completeness results for CnIUL and similarly 
for IMICA L and CnIMICA L(Yang (2015a), p. 57).

Let φn stand for ((…(φ & φ) & … ) & φ) & φ, n φ’s. The 
system CnIMICA L is the involutive micanorm logic IMICA L with 
(n-potency, nP) φn ↔ φn-1, 2 ≤ n.3) As the statements in 
Remark 3 of Yang (2015a) show, although the author insists that 
the standard completeness using the construction in the style of 
Jenei-Montagna (the proof in Theorem 5) is applicable to 
CnIMICA L, its proof is not provided. 

In an another paper (Yang (2015b)), the present author claimed 
that I verified that the proof in Theorem 5 of Yang (2015a) is 
applicable to FCnIMICA L (CnIMICA L with (F)) but not to 
CnIMICA L. However, that verification is not correct in the sense 
that the system considered in Yang (2015b) is not the real 
CnIMICA L in the sense that in place of (nP) the present author 

 3) For the important features of n-potency in logic and algebra, see Ciabattoni 
et al (2002), Wang (2012; 2013), and Kowalski (2004) as examples. 
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introduced (n-mingle, nM) φn → φn-1, 2 ≤ n, as the n-potency 
axiom. Namely, the author introduced CnIMICA L. as IMICA L 
with (n-mingle, nM). 

In order to reconsider the above claim, here we take the 
system IMICA L with (nP) and its extension with (F). This will 
satisfy both our purpose and the claim in Yang (2015b). Here we 
describe these two systems as PnIMIA L and FPnIMIA L in place 
of CnIMICA L and FCnIMICA L because the expression “Cn” in 
these names reminds us n-contraction in place of n-potency.

The paper is organized as follows. In Section 2, we present the 
axiomatizations of the systems PnIMICA L and FPnIMICA L, define 
their corresponding algebraic structures, by subvarieties of the 
variety of residuated lattices, and show that they are complete 
w.r.t. linearly ordered corresponding algebras. In Section 3, we 
establish standard completeness for the system FPnIMICA L. using 
the method introduced in Yang (2015a; 2015b) together with the 
remark that this approach does not work for PnIMICA L.

For convenience, we shall adopt notations and terminology 
similar to those in Cintula (2006), Esteva et al. (2002), Hájek 
(1998), Metcalfe & Montagna (2007), Yang (2009; 2013; 2014; 
2015a; 2015b), and assume familiarity with them (together with 
the results found therein).

2. Syntax

We base some axiomatic extensions of the involutive micanorm 
logic IMICA L on a countable propositional language with 
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formulas Fm  built inductively as usual from a set of propositional 
variables VAR, binary connectives →, &, ∧, ∨, and constants T, 
F, f, t, with defined connectives:

df1. ～φ := φ → f, and
df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We may define t as f → f. We moreover define φn
t as φt & 

… & φt, n factors, where φt := φ ∧ t. For the rest of this 
paper, we use the customary notations and terminology, and the 
axiom systems to provide a consequence relation.

We start with the following axiomatization of IMICA L, the 
most basic fuzzy logic introduced here.

D efinition 2.1  (Yang (2015a)) IMICA L consists of the following 
axiom schemes and rules:

A1. φ → φ (self-implication, SI)
A2. (φ ∧ ψ) → φ, (φ ∧ ψ) → ψ (∧-elimination, ∧-E)
A3. ((φ→ψ)∧ (φ→χ)) → (φ→(ψ∧χ)) (∧-introduction, ∧-I)
A4. φ → (φ ∨ ψ), ψ → (φ ∨ ψ) (∨-introduction, ∨-I)
A5. ((φ→χ)∧ (ψ→χ)) → ((φ∨ψ)→χ) (∨-elimination, ∨-E)
A6. F → φ (ex falso quadlibet, EF)
A7. (φ & ψ) → (ψ & φ) (&-commutativity, &-C)
A8. (t → φ) ↔ φ (push and pop, PP)
A9. φ → (ψ → (ψ & φ)) (&-adjunction, &-Adj)
A10. (φt & ψt) → (φ ∧ ψ) (&∧) 
A11. (ψ & (φ & (φ → (ψ → χ)))) → χ (residuation, Res') 
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A12. ((φ → (φ & (φ → ψ))) & (ψ → χ)) → (φ → χ) (T') 
A13. ((δ & ε) → (δ & (ε & (φ → ψ)t))) ∨ (δ' → (ε' → 

((ε' & δ') & (ψ → φ)t))) (PL) 
A14. ~~φ → φ (double negation elimination, DNE) 
φ → ψ, φ ⊢ ψ (modus ponens, mp)
φ ⊢ φt  (adju) 
φ ⊢ (δ & ε) → (δ & (ε & φ)) (α) 
φ ⊢ δ → (ε → ((ε & δ) & φ)) (β) 

D efinition 2.2  A logic is an axiomatic extension (extension for 
short) of an arbitrary logic L if and only if (iff) it results from L 
by adding axiom schemes. Especially, we introduce two particular 
extensions of IMIA L. 

● N-potent involutive micanorm logic
PnIMICA L is IMICA L plus (nP) φn ↔ φn-1, 2≤n.

● Fixed-pointed n-potent involutive micanorm logic
FPnIMICA L is PnIMICA L plus (F) t ↔ f.

For easy reference, we let Ls be the set of the weakening-free, 
non-associative fuzzy logics defined in Definition 2.

D efinition 2.3  Ls = {PnIMICA L, FPnIMICA L}

A theory over L (∈ Ls) is a set T of formulas. A proof in a 
theory over L is a sequence of formulas whose each member is 
either an axiom of L or a member of T or follows from some 
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preceding members of the sequence using a rule of L. T ⊢ φ, 
more exactly T ⊢L φ, means that φ is provable in T w.r.t. L, 
i.e., there is an L-proof of φ in T. A theory T is inconsistent if 
T ⊢ F; otherwise it is consistent. 

The deduction theorem for L is as follows:

Proposition 2.4 (Cintula et al. (2013; 2015)) Let T be a theory, 
and φ, ψ formulas. T ∪ {φ} ⊢L ψ iff T ⊢L γ(φ) → ψ for 
some γ ∈ Π(bDT*).4)

For convenience, “～,” “∧,” “∨,” and “→” are used 
ambiguously as propositional connectives and as algebraic 
operators, but context should clarify their meanings.

Suitable algebraic structures for L (∈ Ls) are obtained as a 
subvariety of the variety of commutative monoidal residuated 
lattices.

D efinition 2.5 (Yang (2015a)) (i) A pointed bounded 
commutative residuated lattice is a structure A  = (A, ⊤, ⊥, t, f, 
∧, ∨, *, →) such that:

(Ⅰ) (A, ⊤, ⊥, ∧, ∨) is a bounded lattice with top element 
⊤ and bottom element ⊥.

(Ⅱ) (A, *, t) is a commutative monoid.
(Ⅲ) y ≤ x→z iff x * y ≤ z, for all x, y, z ∈ A 

(residuation).
(ii) An IMICAL-algebra is a pointed bounded commutative 

 4) For γ and Π(bDT*), see Cintula et al. (2013; 2015) and Yang (2015a).
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residuated lattice satisfying
● t ≤ ((z*w)→(z*(w*(x→y)t))) ∨ (z'→(w'→((w'*z')*(y→

x)t))), for all x, y, z, w, z', w' ∈ A (PLA).
● t ≤ ～～x → x, for all x ∈ A (DNEA).

L-algebras the class of which characterizes L are defined as 
follows.

D efinition 2.6  (L-algebras) The algebraic (in)equations 
corresponding to the structural axioms introduced in Definition 2.2 
are defined as follows: for all x ∈ A,
● xn = xn-1, 2≤n, (nPA)
● t = f (FA).
A PnMICAL-algebra is an IMICAL-algebra satisfying (nPA) and 

a FPnIMICAL-algebra is a PnIMICAL-algebra satisfying (FA). We 
call these algebras L-algebras.

An L-algebra is said to be linearly ordered if the ordering of 
its algebra is linear, i.e., x ≤ y or y ≤ x (equivalently, x ∧ y 
= x or x ∧ y = y) for each pair x, y.

D efinition 2.7  (Evaluation) Let A be an algebra. An 
A-evaluation is a function v : FOR → A satisfying: v(φ → ψ) = 
v(φ) → v(ψ), v(φ ∧ ψ) = v(φ) ∧ v(ψ), v(φ ∨ ψ) = v(φ) ∨ 

v(ψ), v(φ & ψ) = v(φ) * v(ψ), v(F) = ⊥, v(f) = f, (and hence 
v(～φ) = ～v(φ), v(T) = ⊤, and v(t) = t).
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D efinition 2.8  Let A be an L-algebra, T a theory, φ a formula, 
and K a class of L-algebras.

(i) (Tautology) φ is a t-tautology in A, briefly an A-tautology 
(or A-valid), if v(φ) ≥ t for each A-evaluation v.

(ii) (Model) An A-evaluation v is an A-model of T if v(φ) ≥ t 
for each φ ∈ T. We denote the class of A-models of T, by 
Mod(T, A).

(iii) (Semantic consequence) φ is a semantic consequence of T 
w.r.t. K, denoting by T ⊨K φ, if Mod(T, A) = Mod(T ∪ {φ}, 
A) for each A ∈ K.

D efinition 2.9  (L-algebra, Cintula (2006)) Let A, T, and φ be 
as in Definition 3.4. A is an L-algebra iff, whenever φ is 
L-provable in T (i.e. T ⊢L φ, L an L logic), it is a semantic 
consequence of T w.r.t. the set {A} (i.e. T⊨  φ), A a 
corresponding L-algebra. By MOD(l)(L), we denote the class of 
(linearly ordered) L-algebras. Finally, we write T ⊨(l)

L φ in place 
of T ⊨MOD

(l)
(L) φ.

Theorem 2.10  (Strong completeness) Let T be a theory, and φ 

a formula. T ⊢L φ iff T ⊨L φ iff T ⊨l
L φ.

Proof: We obtain this theorem as a corollary of Theorem 3.1.8 
in Cintula & Noguera (2011). □
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3. Standard completeness

In this section, we provide standard completeness results for 
FPnIMICA L using the Jenei-Montagna-style construction in Eeteva 
et al. (2002) and Jenei & Montagna (2002).

We first show that finite or countable, linearly ordered 
FPnIMICA L-algebras are embeddable into a standard algebra. (For 
convenience, we add the ‘less than or equal to’ relation symbol 
“≤” to such algebras.) First, note the following results. 

Theorem 3.1  (Yang (2015a)) 
(i) For every finite or countable linearly ordered MICA L-algebra 

A  = (A, ≤A, ⊤, ⊥, t, f, ∧, ∨, *, →), there is a countable 
ordered set X, a binary operation ○, and a map h from A into 
X such that the following conditions hold:
(Ⅰ) X is densely ordered, and has a maximum Max, a minimum 
Min, and special elements ℯ, ∂.
(Ⅱ) (X, ○, , ℯ) is a linearly ordered, monotonic, 
commutative groupoid with unit.
(Ⅲ) ○ is conjunctive and left-continuous w.r.t. the order topology 
on (X, ).
(Ⅳ) h is an embedding of the structure (A, ≤A, ⊤, ⊥, t, f, ∧, 
∨, *) into (X, , Max, Min, ℯ, ∂, min, max, ○), and for all 
m, n ∈ A, h(m → n) is the residuum of h(m) and h(n) in (X, 

, Max, Min, ℯ, ∂, max, min, ○).
(ii) For every finite or countable linearly ordered 

IMICA L-algebra A  = (A, ≤A, ⊤, ⊥, t, f, ∧, ∨, *, →), there 
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is a countable ordered set X, a binary operation ○, and a map h 
from A into X such that the conditions (I) to (IV) in (i) and the 
following condition hold:

(Ⅴ) For all x ∈ X, x is involutive, i.e., it satisfies (DNEA).

Proposition 3.2  For every finite or countable linearly ordered 
FPnIMICA L-algebra A  = (A, ≤A, ⊤, ⊥, t, f, ∧, ∨, *, →), 
there is a countable ordered set X, a binary operation ○, and a 
map h from A into X such that the conditions (I) to (V) of (ii) 
in Theorem 3.1 and the following condition hold:
(A) (X, ○, , ℯ) is n-potent and fixed-pointed.

Proof: For convenience, we assume A as a subset of Q ∩ [0, 
1] with a finite or countable number of elements, where 0 and 1 
are least and greatest elements, respectively, each of which 
corresponds to ⊤ and ⊥, respectively.

We first note that, for MICA L, a linearly ordered, monotonic 
groupoid with unit (X, ○, , ℯ) is defined as follows: 

X = {(m, x): m ∈ A ∖ {0 (= ⊥)} and x ∈ Q ∩ (0, m]} 
∪ {(0, 0)};

for (m, x), (n, y) ∈ X,

(m, x)  (n, y) iff either m <A n, or m =A n and x ≤ y;

(m,x) ○ (n,y) = max{(m,x), (n,y)} if m*n =A m∨n, m ≠A n, and
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                             (m, x)  ℯ or (n, y)  ℯ;
              min{(m,x), (n,y)} if m * n = m ∧ z, and
                             (m, x)  ℯ or (n, y)  ℯ;
              (m * n, m * n)  otherwise.

For convenience, we henceforth drop the index A in ≤A and 
=A, if we need not distinguish them. Context should clarify the 
intention.

We next note that, for IMICA L, m+ denotes the successor of m 
if it exists, otherwise m+ = m, for each m ∈ A; since the 
negation in A, defined as ~m := m → f is involutive, we have 
that: m = (~n)+ iff n = (~m)+; moreover, if m < m+, then 
(~(m+))+ = ~m. Here, we use Y below in place of the X above. 
Let (Y, ) be the linearly ordered set, defined by

Y = {(m, m): m ∈ A} ∪
{(m, x): ∃m'∈A such that m = m'+ > m', and x ∈ Q ∩ (0, m)},

and  being the corresponding lexicographic ordering as above. 
It is clear that (Y, ) is a subset of the ordered set (X, ) 
defined as above with the same bounds and special elements ℯ 

(= (t, t)) and ∂ (= (f, f)). Notice that Y is closed under ○ and 
that  is a linear order with maximum (1, 1), minimum (0, 0), 
and special elements ℯ and ∂. Furthermore,  is dense. This 
proves (I).

For condition (II), we need to define a new operation ⊙ on Y, 
based on ○, as follows:
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(m,x)⊙(n,y) = min{∂,(m,x)○(n,y)} if m = (~n)+ and p/q+p’/q’≤1,
                              where x = mp/q and y=np’/q’,  

                              or m < (~n)+;
             (m,x) ○ (n,y)   otherwise.

The operation ⊙ satisfies conditions (II) to (V) (see Theorem 5 
in Yang (2015a)). 

Now we note that for FPnIMICA L, 3 ≤ n, the groupoid 
operation ⊙ is defined based on the definition of ○ above, 
whereas for FP2IMICA L the groupoid operation ⊙ is defined 
based on the following definition of ○: for (m, x), (n, y) ∈ X,

(m,x) ○ (n,y) = max{(m,x), (n,y)} if m * n =A m ∨ n and
                             (m, x) ≻ ℯ or (n, y) ≻ ℯ;
              min{(m,x), (n,y)} if m * n = m ∧ z, and
                             (m, x)  ℯ or (n, y)  ℯ;
              (m * n, m * n)  otherwise.

The proof for FPnIMICA L is analogous to that for IMIA L. For 
FPnIMICA L, we need to prove that (X, ⊙, , ℯ) satisfies the 
condition (A), i.e., (nPA) and (FA). We first prove the n-potency 
of ⊙, i.e., (m, x)n = (m, x)n-1, 2 ≤ n.  

Case 1. m = (~m)+ and 2p/q ≤ 1, where x = mp/q, or m < 
(~m)+.

Subcase 1.1. m2 = m. Since t < m is not the case, we have m 
= m2 ≤ t = f < (~m)+ and thus (m, x) ⊙ (m, x) = min{∂, (m, 
x) ○ (m, x)} = (m, x) ○ (m, x) = (m, x); therefore, (m, x)n = 
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(m, x)n-1 since m3 = m2 and thus mn = mn-1 for 2 ≤ n. 
Subcase 1.2. m ≠ m2. We need to show (m, x)n = (m, x)n-1 

for 2 < n. Since the condition implies m2 < m < t, we have (m, 
x) ⊙ (m, x) = min{∂, (m, x) ○ (m, x)} = (m, x) ○ (m, x) = 
= (m2, m2), (m2, m2) ⊙ (m, x) = (m2, m2) ○ (m, x) = (m3, m3) 
and thus (m, x)n-1 = (mn-1, mn-1) and (m, x)n = (mn, mn). 
Therefore, we have (m, x)n = (m, x)n-1 since mn = mn-1.

Case 2. Otherwise. The condition implies e ≺ (m, x). If m2 = 
m, then (m, x) ○ (m, x) = (m, x) and thus (m, x)n = (m, x)n-1. 
Otherwise, we have t < m < m2 and thus (m, x) ○ (m, x) = 
(m2, m2). Hence, as above, we also have (m2, m2) ○ (m, x) = 
(m3, m3) and thus  (m, x)n = (m, x)n-1 since mn = mn-1.

The proof of fixed-point is easy since t = f and thus e = (t, t) 
= (f, f) = ∂. □

Proposition 3.3  Every countable linearly ordered 
FPnIMICA L-algebra can be embedded into a standard algebra.

Proof: In an analogy to the proof of Theorem 3.2 in Jenei & 
Montagna (2002), we prove this. Let X, A , etc. be as in 
Proposition 3.2. Since (X, ) is a countable, dense, 
linearly-ordered set with maximum and minimum, it is order 
isomorphic to (Q ∩ [0, 1], ≤). Let g be such an isomorphism. 
If (I) to (V) and (A) hold, letting for α, β ∈ [0, 1], α ⊙´ β = 
g(g-1(α) ⊙ g-1(β)), and, for all m ∈ A, h´(m) = g(h(m)), we 
obtain that Q ∩ [0, 1], ≤, 1, 0, ℯ, ∂, ⊙´, h´ satisfy the 
conditions (I) to (V) and (A) of Proposition 3.2 whenever X, , 
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Max, Min, ℯ, ∂, ⊙, and h do. Thus, without loss of generality, 
we can assume that X = Q ∩ [0, 1] and  = ≤.

Now we define for α, β ∈ [0, 1],

α ⊙＂ β = supx∈X:x≤αsupy∈X:y≤β x ⊙ y.

Commutativity of ⊙＂ follows from that of ⊙. Its monotonicity, 
identity, fixed-point, and n-potency are easy consequences of the 
definition. Furthermore, it follows from the definition that ⊙＂ is 
conjunctive, i.e., 0 ⊙＂ 1 = 0.

We prove left-continuity. Suppose that <αn: n ∈ N >, <βn: n 
∈ N > are increasing sequences of reals in [0, 1] such that sup{α

n: n ∈ N } = α and sup{βn: n ∈ N } = β. By the monotonicity 
of ⊙＂, sup{αn ⊙＂ βn} = α ⊙＂ β. Since the restriction of 
⊙＂ to Q ∩ [0, 1] is left-continuous, we obtain 

α ⊙＂ β = sup{q ⊙＂ r: q, r ∈ Q ∩ [0, 1], q ≤ α, r ≤ β}
         = sup{q ⊙＂ r: q, r ∈ Q ∩ [0, 1], q < α, r < β}.

For each q < α, r < β, there is n such that q < αn and r < βn. 
Thus,

sup{αn ⊙＂ βn: n ∈ N } ≥ sup{q ⊙＂ r: q, r ∈ Q ∩ [0, 
1], q < α, r < β} = α ⊙＂ β.

Hence, ⊙＂ is a left-continuous involutive micanorm on [0, 1].
It is an easy consequence of the definition that ⊙＂ extends 



Eunsuk Yang288

⊙. By (I) to (V) and (A), h is an embedding of (A, ≤A, ⊤, 
⊥, t, f, ∧, ∨, *) into ([0, 1], ≤, 1, 0, ℯ, ∂, min, max, ⊙
＂). Moreover, ⊙＂ has a residuum, calling it ⇀.

We finally prove that for x, y ∈ A, h(x → y) = h(x) ⇀ h(y). 
By (IV), h(x → y) is the residuum of h(x) and h(y) in (Q ∩ [0, 
1], , 1, 0, ℯ, ∂, min, max, ⊙). Thus

h(x) ⊙＂ h(x → y) = h(x) ⊙ h(x → y) ≤ h(y).

Suppose toward contradiction that there is α > h(x → y) such 
that α ⊙＂ h(x) ≤ h(y). Since Q ∩ [0, 1] is dense in [0, 1], 
there is q ∈ Q ∩ [0, 1] such that h(x → y) < q ≤ α. Hence 
q ⊙＂ h(x) = q ⊙ h(x) ≤ h(y), contradicting (IV). □

Theorem 3.4  (Strong standard completeness) For FPnIMICA L, 
the following are equivalent:

(1) T ⊢FPnIMICAL φ.
(2) For every standard FPnIMICA L-algebra and evaluation v, if 

v(ψ) ≥ ℯ for all ψ ∈ T, then v(φ) ≥ ℯ.

Proof: (1) to (2) follows from definition. We prove (2) to (1). 
Let φ be a formula such that T ⊬FPnIMICA L φ, A  a linearly 
ordered FPnIMICA L-algebra, and v an evaluation in A  such that 
v(ψ) ≥ t for all ψ ∈ T and v(φ) < t. Let h´ be the embedding 
of A  into the standard L-algebra as in proof of Proposition 3.3. 
Then, h´ ⊙ v is an evaluation into the standard 
FPnIMICA L-algebra such that h´ ⊙ v(ψ) ≥ ℯ and yet h´ ⊙ v
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(φ) < ℯ. □

Remark 3.5  The proof of standard completeness in Theorem 3.4 
does not work for PnIMICA L because the definition of ⊙ does 
not satisfy the n-potency property. Consider the following case: 0 
< f < m, ~m < (~m)+ < t < 1. Let m = m * m, we have (m, 
x) ⊙ (m, x) = min{∂, (m, x) ○ (m, x)} = ∂ ≺ (m, x); 
therefore, (m, x) ≠ (m, x) ⊙ (m, x). Otherwise, let (f * m) * f 
< f * m < m. We have (m, x)3 = ∂ ⊙ (m, x) = (f * m, f * 
m) ≠ (m, x)2. Therefore, we have (m, x)n ≠ (m, x)n-1 for 2 ≤ 

n.

4. Concluding remark

We investigated (not merely algebraic completeness for 
PnIMICA L and FPnIMICA L but also) standard completeness for 
FPnIMICA L. We further noted that the proof of standard 
completeness does not work for PnIMICA L.
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N-멱등 공리를 갖는 누승적 미카놈 논리

양 은 석

이 글에서 우리는 누승적 미카놈 논리 IMICA L의 몇몇 공리적 

확장 체계를 다룬다. 보다 구체적으로, 먼저 누승적 미아놈에 바탕

을 두 논리 체계 PnIMIA L, FPnIMIA L을 소개한다. 각 체계에 상응

하는 대수적 구조를 정의한 후, 이들 체계가 대수적으로 완전하다

는 것을 보인다. 다음으로, 이 논리 체계들 중 FPnIMIA L가 표준적

으로 완전하다는 것 즉 단위 실수 [0,1]에서 완전하다는 것을 제네

이-몬테그나 방식의 구성을 사용하여 보인다.

주요어: 퍼지 논리, 누승, 미카놈, 대수적 완전성, 표준 완전성, 
IMICA L, 고정점


